Archive for El Universo

Desde la noche de los tiempos… ¡Hemos tratado de conocer el Universo!

¡El Universo! Gracias a la Astronomía, la Astrofísica y otras disciplinas y estudios relacionados, estamos conociendo cada día lo que en realidad es nuestro Universo que, nos tiene deparadas muchas, muchas sorpresas y maravillas que ni podemos imaginar. ¡Son tántas las cosas que aún tenemos que aprender de éste Universo Inmenso!

 

                     Las primeras estrellas aparecieron después de cientos de millonesde años

Al principio, cuando el universo era simétrico, sólo existía una sola fuerza que unificaba a todas las que ahora conocemos, la gravedad, las fuerzas electromagnéticas y las nucleares débil y fuerte, todas emergían de aquel plasma opaco de alta energía que lo inundaba todo. Más tarde, cuando el universo comenzó a enfriarse, se hizo transparente y apareció la luz, las fuerzas se separaron en las cuatro conocidas, emergieron los primeros quarks para unirse y formar protones y neutrones, los primeros núcleos aparecieron para atraer a los electrones que formaron aquellos primeros átomos.Doscientos millones de años más tarde, se formaron las primeras estrellas y galaxias. Con el paso del tiempo, las estrellas sintetizaron los elementos pesados de nuestros cuerpos, fabricados en supernovas que estallaron, incluso antes de que se formase el Sol. Podemos decir, sin temor a equivocarnos, que una supernova anónima explotó hace miles de millones de años y sembró la nube de gas que dio lugar a nuestro sistema solar, poniendo allí los materiales complejos y necesarios para que algunos miles de millones de años más tarde, tras la evolución, apareciéramos nosotros.

Pero, veámos en dos entradas siguientes algo más, de lo que creemos que es el universo y de lo que pudo pasar en aquellos primeros momentos.

emilio silvera

¡Aquellos primeros momentos!

Un paseo por el Universo

Un paseo por el Universo

Un paseo por el Universo

¡El Origen del Universo! ¿Cómo puedo saberlo yo?

 

 

 

¿Dónde estabas tú cuando yo puse los cimientos de la Tierra? Dilo si tienes entendimiento. Claro que a esta pregunta, lo único que podríamos contestar sería: ¿Quién sabe realmente? La especulación sobre el origen del universo es una vieja actividad humana que está sin resolver, ya que, pretendemos saber algo que no sabemos si llegó a ocurrir, toda vez que incluso, podría ser, que el universo esté aquí desde siempre. Y, si llegó como algo nuevo, tampoco sabemos, a ciencia cierta, cómo y de dónde lo hizo. Pero, nosotros, los humanos, no dejamos de especular con esta cuestión de compleja resolución y dejamos volar nuestra imaginación en forma de conjeturas y teorías que, no siempre son el fiel reflejo de lo que pudo pasar que, de momento, permanece en el más profundo anonimato.

La Humanidad forma parte indisoluble, indistinguible del cosmos. Todo lo que somos surgió con el mismo universo y en el corazón de las estrellas. En palabras de Sagan, somos polvo de estrellas.

Claro que, la Humanidad y el Universo están tan juntos, tan conectados que, sería imposible que no hablaran de él, y, sobre todo, que no tratataran de saber su comienzo (si es que lo hubo) y, hurgar en su dinñamica para poder entender nuestra presencia aquí junto con las estrellas de las que procedemos y de las galaxias que son las villas del Universo que alojan a cientos de millones de mundos habitados que, como la Tierra, tienen otras criaturas que tambien, ellas se preguntan por el principio y el final para poder conocer sus destinos.

Algunos nos dicen que el Universo surgió de la “Nada” y, está claro que la Nada no puede existir y, si surgió es porque había, con lo cual, la Nada queda invalidada. Pero, si hubo un suceso de creación, ¿que duda nos puede caber de que tuvo que haber una causa? Lo cierto es que, en las distintas teorías de la “creación” del universo, existen muchas reservas.

No obstante tales reservas, unos pocos científicos trataron de investigar la cuestion de cómo pudo haberse originado el universo, aunque admitiendo que sus esfuerzos quizás eran “prematuros”, como dijo Weinberg con suavidad. En el mejor de los casos, contemplado con una mirada alentadora, el trabajo realizado hasta el momento, parece haber encendido una lámpara en la antesala de la génesis. Lo que allí quedó iluminado era muy extraño, pero era, en todo caso, estimulante. No cabía descubir algo familiar en las mismas fuentes de la creación.

Hemos podido contemplar como en la Nebulosa del Águila nacen nuevas estrellas masivas. Sin embargo, no hemos llegado a poder saber, con certeza como surgió el Universo entero y de dónde y porqué lo hizo para conformar un vasto espacio-tiempo lleno de materia que evolucionaría hasta poder conformar las estrellas y los mundos en enormes galaxias, y, en esos mundos, pudieron surgir criaturas que, conscientes de SER, llegaron desde un nivel animal rudimentario, hasta los más sofisticados pensamientos que les hicieron preguntarse: ¿Quiénes somos, de dónde venimos, hacia dónde vamos? Y, esas preguntas, realizadas 14.000 millones de años después del comienzo del tiempo, y  junto a la pregunta del origen del Universo, todavía, no han podido ser contestadas. Nuestro intelecto evoluciona pero, sus límites son patentes.

Una estrella que se forma en la Nebulosa comienza siendo protoestrellas y, cuando entra en la secuencia principal, brilla durante miles de millones de años dutante los cuales crea nuevos elementos a partir del más sencillo, el Hidrógeno. Los cambios de fase que se producen por fusión en el horno nuclear de las estrellas, son los que han permitido que existieran los materiales necesarios para la química de la vida que, al menos hasta donde sabemos, no apareció en nuestro planeta Tierra, hasta hace unos 4.o0o millones de años, y, desde entonces, ha estado evolucionando para que ahora, nosotros, podamos preguntas, por el origen del universo.

Los científicos han imaginado y han puesto sobre la mesa para su estudio, dos hipótesis, la llamada génesis del vacío, y la otra, génesis cuántica y ambas, parecían indicar mejor lo que el futuro cercano podía deparar al conocimiento humano sobre el origen del Universo.

La Génesis de vacío: El problema central de la cosmología es explicar como algo msurge de la nada. Por “algo” entendemos la totalidad de la materia y la energía, el espacio y el tiempo: el universo que habitamos. Pero la cuestión de lo que significa NADA es más sitíl. En la ciencia clásica, “nada” era un vacío, el espacio vacío que hay entre dos partículas de materia. Pero esta concepsión siempre planteaba problemas, como lo atestigua la prolongada indagación sobre si el espacio estana lleno de éter, y en todo caso no sobrevivió al advenimiento de la física cuántica.

El vacío cuántico nunca es realmente vacío, sino que resoba de partículas “virtuales”. Las partículas virtuales pueden ser concebidas como la posibilidad esbozada por el principio de indeterminación de Heisenberg de que una partícula “real” llegue en un tiempo determinado a un lugar determinado. Como las siluetas que salen de pronto en un campo de tiro policial, representan no sólo lo que es sino también lo que podría ser. Desde el punto de vista de la física cuántica, toda partícula “real” está rodeada por una corona de partículas y antipartículas virtuales que borbotean del vacío, interaccionan unas con otras y luego desaparecen.

http://francisthemulenews.files.wordpress.com/2008/02/dibujo26ene2008a.jpg

Las ondas fluctúan de forma aleatoria e impredecible, con energía positiva momentáneamente aquí, energía negativa momentáneamente allí, y energía cero en promedio. El aspecto de partícula está incorporado en el concepto de partículas virtuales, es decir, partículas que pueden nacer en pares (dos partículas a un tiempo), viviendo temporalmente de la energía fluctuacional tomada prestada de regiones “vecinas” del espacio, y que luego se aniquilan y desaparecen, devolviendo la energía a esas regiones “vecinas”. Si hablamos de fluctuaciones electromagnéticas del vacío, las partículas virtuales son fotones virtuales; en el caso de fluctuaciones de la gravedad en el vacío, son gravitones virtuales.

Claro que, en realidad, sabemos poco de esas regiones vecinas de las que tales fluctuaciones toman la energía. ¿Qué es lo que hay allí? ¿Está en esa región la tan buscada partícula de Higgs? Sabemos que las fluctuaciones de vacío son, para las ondas electromagnéticas y gravitatorias, lo que los movimientos de degeneración claustrofóbicos son para los electrones. Si confinamos un electrón a una pequeña región del espacio, entonces, por mucho que uno trate de frenarlo y detenerlo, el electrón está obligado por las leyes de la mecánica cuántica a continuar moviéndose aleatoriamente, de forma impredecible. Este movimiento de degeneración claustrofóbico que produce la presión mediante la que una estrella enana blanca se mantiene contra su propia compresión gravitatoria o, en el mismo caso, la degeneración de neutrones mantiene estable a la estrella de neutrones, que obligada por la fuerza que se genera de la degeneración de los neutrones, es posible frenar la enorme fuerza de gravedad que está comprimiendo la estrella.

Una cosa sí sabemos, las reglas que gobiernan la existencia de las partículas virtuales se hallan establecidas por el principio de incertidumbre y la ley de conservación de la materia y de la energía.

http://farm5.static.flickr.com/4025/4516869871_1cd24e4f97.jpg

En un nuevo estudio, un grupo de físicos ha propuesto que la gravedad podría disparar un efecto desbocado en las fluctuaciones cuánticas, provocando que crezcan tanto que la densidad de energía del vacío del campo cuántico podría predominar sobre la densidad de energía clásica. Este efecto de predominancia del vacío, el cual surge bajo ciertas condiciones específicas pero razonables, contrasta con la ampliamente sostenida creencia de que la influencia de la gravedad sobre los fenómenos cuánticos debería ser pequeña y subdominante.

Claro que, hablar aquí del vacío en relación al surgir del universo, está directamente asentado en la creencia de algunos postulados que dicen ser posible que, el universo, surgiera de una Fluctuación de vacío producida en otro universo paralelo y, desde entonces, funciona de manera autónoma como un nuevo universo de los muchos que son en el más complejo Metaverso.

Inmediatamente después de que la llamada espuma cuántica del espacio-tiempo permitiera la creación de nuestro Universo, apareció una inmensa fuerza de repulsión gravitatoria que fue la responsable de la explosiva expansión del Universo primigenio (inflación(*)).Las fluctuaciones cuánticas del vacío, que normalmente se manifiestan sólo a escalas microscópicas, en el Universo inflacionario en expansión exponencial aumentaron rápidamente su longitud y amplitud para convertirse en fluctuaciones significativas a nivel cosmológico.

En el Modelo corriente del big bang que actualmente prevalece y que, de momento, todos hemos aceptado al ser el que más se acerca a las observaciones realizadas, el universo surgió a partir de una singularidad, es decir, un punto de infinita densidad y de inmensa energía que, explosionó y se expansionó para crear la materia, el espacio y el tiempo que, estarían gobernados por las cuatro leyes fundamentales de la naturaleza:

Fuerzas nucleares débil y fuerte, el electromagnetismo y la Gravedad. Todas ellas, estarían apoyadas por una serie de números que llamamos las constantes universales y que hacen posible que nuestro universo, sea tal como lo podemos contemplar. Sin embargo, existen algunas dudas de que, realmente, fuera esa la causa del nacimiento del Universo y, algunos postulan otras causas como transiciones de fase en un universo anterior y otras, que siendo más peregrinas, no podemos descartar.

La Tierra con la luna

Nosotros, estamos confinados en el planeta Tierra que es un mundo suficientemente preparado para acoger nuestras necesidades físicas, pero, de ninguna manera podrá nunca satisfacer nuestras otras necesidades de la Mente y del intelecto que produce imaginación y pensamientos y que, sin que nada la pueda frenar, cual rayo de luz eyectado desde una estrella masiva refulgente, nuestros pensamientos vuelan también, hacia el espacio infinito y con ellos, damos rienda suelta a nuestra más firme creencia de que, nuestros orígenes están en las estrellas y hacia las estrellas queremos ir, allí, amigos míos, está nuestro destino.

El Universo es grande, inmenso, casi infinito pero, ¿y nosotros? Bueno, al ser una parte de él, al ser una creación de la Naturaleza, estamos formando parte de esta inmensidad y, precisamente, nos ha tocado desempeñar el papel de la parte que piensa, ¿tendrá eso algún significado?

Yo, no lo sé… Pero… ¿¡Quién sabe realmente!?

emilio silvera

¡Las Galaxias! ¡La Entropía! ¡El Universo! ¡La Vida!

«

Vía Láctea (como otras galaxias espirales) es una zona de reducción de entropía…,  así se deduce de varios En planteamiento más prudente señala que el entropía y superar dicho Pero un sistema podría producir emtropía negativa sin estar vivo, como en el caso de contracción por efecto de la gravedad que hemos comentado a lo largo de estos trabajos. Desde este punto de vista, no hay frontera claramente definida entre los objetos vivos y la materia “inerte”. Yo, por mi parte creo que, la materia nunca es inerte y, en cada momento, simplemente ocupa la fase que le ha tocado representar en ese punto del espacio y del tiempo.

http://www.ecolo.org/lovelock/photos/Gaia.JimSandy.Lovelock1.jpg

                                James y Sandy Lovelock ¿Qué haríamos sin ellas?

El mero hecho de que la frontera entre la vida y la ausencia de vida sea difuso, y que el lugar en el que haya que trazar la línea sea un tema de discusión, es, sin embargo, un descubrimiento Como ya hemos visto en las explicaciones de otros trabajos expuestos aquí, es natural que los sistemas simples se organicen en redes al borde del caos y, una vez que lo hacen, es natural que la vida surja allí donde hay  “una pequeña charca caliente” que sea adecuada para ello. Esto es parte de un proceso más o menos continuo, sin que haya un salto repentino en el que comience la vida. Desde ese punto de http://universodoppler.files.wordpress.com/2011/05/ig272_kees_saturn_titan_02.jpg

                                       ¡La vida! podría estar presente… ¡ en tantos lugares…!

Gracias a la teoría de Lovelock sobre la naturaleza de la vida estamos a punto de poder conseguirlo, y es posible que antes de los próximos 50 años se lance al espacio un telescopio capaz de Hay dos etapas del descubrimiento de estas otras Gaias. En primer lugar debemos ser capaces de detectar otros planetas del tamaño de la Tierra que describan órbitas alrededor de otras estrellas; luego tenemos que analizar la atmósfera de esos planetas para entropía están en marcha. Los primeros planetas “extrasolares” se detectaron utilizando técnicas Doppler, que ponían de manifiesto unos cambios pequeñísimos en el movimiento de las estrellas alrededor de las cuales orbitaban dichos planetas. Este efecto, que lleva el nombre del físico del siglo XIX Christian Doppler, modifica la posición de las líneas en el espectro de la luz de un objeto, desplazándolas en una cantidad que depende de lo rápido que el objeto se mueva con respecto al observador.

http://farm6.static.flickr.com/5010/5348863194_0e954d8a95.jpg

Zonas habitables, los astrónomos han ignorado las enanas blancasen su agujeros negrosy las estrellas de neutronescaptan toda la atención como destinos finales de las estrellas, la mayor parte nunca llegarán a ese extremo. Aproximadamente el 97 por ciento de las estrellas de nuestra galaxia no son lo bastante masivas para acabar en ninguna de esas dos En lugar de eso, los astrónomos creen que terminarán sus vidas como enanas blancas, densos y calientes trozos de materia inerte en los que las reacciones nucleares terminaron hace mucho. Estas estrellas tienen aproximadamente el tamaño de la Tierra y se mantienen en contra del colapso gravitatorio mediante el Principio de Exclusión de pauli, el cual evita que los electrones ocupen el mismo estado al mismo tiempo. Pero, a todo esto, hay que pensar en el tirón gravitatoria que una de estas estrellas podría incidir sobre cualquier planeta.

 

 

Para hacernos una idea de lo que es este tipo de observaciones, pensemos que el tirón gravitatorio que  Júpiter  ejerce sobre el Sol produce en éste un cambio de velocidad de unos 12,5 metros por segundo, y lo desplaza (con respecto al centro de masa del Sisterma solar) a una distancia de 800.000 kilómetros, más de la mitad del diámetro de este astro, cuando el Sol y Júpiter orbitan en torno a sus recíprocos centros de masa. La velocidad de este movimiento es comparable a la de un corredor olímpico de 100 metros lisos y, para un observador situado fuera del Se trata del tipo de desplazamiento que se ha detectado en la luz a partir de los http://www.cardassiaprimera.com.ar/Alfa-Centauri.jpg

                                                                                                               Sistema Alfa Centauri

Hay otras técnicas que podrían servir para identificar planetas más pequeños. Si el planeta pasa directamente por delante de su estrella (una ocultación o un tránsito), se produce un empalidecimiento regular de la luz procedente de dicha estrella. Según las estadísticas, dado que las órbitas de los planetas extrasolares podrían estar inclinadas en cualquier dirección con respecto a nuestra posición, sólo el 1 por ciento de estos planetas estará en órbitas tales que podríamos ver ocultaciones y, en cualquier caso, cada tránsito dura sólo unas pocas horas (una vez al año para un planeta que tenga una órbita como la de la Tierra; una vez cada once años para uno cuya órbita sea como la de Júpiter.

 

Misión Kepler de la NASACuando los humanos miramos al espacio y pensamos en sus increíbles distancias, es inevitable imaginar que sería posible encontrar algún sitio como nuestra casa.

Existen, sin embargo, proyectos que mediante el sistema de lanzar satélites al espacio que controlaran el movimiento (cada uno de ellos) de un gran número de estrellas con el fin de buscar esas ocultaciones. Si se estudian 100.000 estrellas, y 1.000 de ellas muestran tránsitos, la estadística resultyante implicaría que practicamente toda estrella similar al Sol está acompañada por planetas. Sin embargo, aunque todas las búsquerdas de este tipo son de un valor inestimable, la técnica Doppler es la que, de momento, se puede La mejor perspectiva que tenemos en el momento inmediato, es la que nos ofrece el satélite de la NASA llamado SIM (Space Interforometry Mission) que mediante la técnica de interferometría (combinar los Hacia el final de la década presente (si todo va bien), la Agencia Espacial Europea lanzará un satélite cuyo nombre será GAIA y que tendrá como misión principal, no precisamente buscar otras Gaias, sino trazar un Fotografía cedida del observatorio astronómico de Paranal, cerca del lugar donde se levanta el imponente cerro que en la próxima década albergará el Telescopio Europeo Extremadamente Grande, E-ELT, el mayor ojo que desde la Tierra rastreará el Universo en busca de vida en otros mundos. EFE/Marcelo Hernández/Observatorio Austral Europeo

Fotografía cedida del observatorio astronómico de Paranal, cerca del lugar donde se levanta el imponente cerro que en… medio del árido desierto de Atacama, allí donde la existencia parece una quimera, se levanta el imponente cerro que en la próxima década albergará el Telescopio Europeo Extremadamente Grande, E-ELT, el mayor ojo que desde la Tierra rastreará el Universo en busca de vida en otros mundos.

Dentro de los próximos 10 años, deberíamos tener localizados decenas de miles de sistemas planetarios extrasolares en las zonas de la Vía Láctea próxima a nosotros. Sin embargo, seguiría tratándose de observaciones indirectas y, para captar los espectros de algunos de esos planetas, se necesita dar un salto más en nuestra actual tecnológía que, como he dicho, resulta indificiente para realizar ciertas investigaciones que requieren y exigen mucha más precisión.

Los nuevos proyectos y las nuevas generaciones de sofisticados aparatos de alta precisión y de IA avanzada, nos traerán, en los próximos 50 años, muchas alegrías y sorpresas que ahora, ni podemos imaginar.

Cambiemos de tema: ¿Qué es una partícula Partícula Diagrama de Feynmann. No pocas veces hemos dicho que, en una partícula

Por partícula-antipartícula que aparece de la “nada” y luego se aniquila rápidamente sin liberar energía.  Las partículas virtuales pueblan la totalidad del espacio en enormes cantidades, aunque no pueden ser observadas directamente.

En estos procesos no se viola el principio de conservación de la masa y la energía siempre que las partículas virtuales aparezcan y desaparezcan lo suficientemente rápido como para que el cambio de masa o energía no pueda ser detectado.  No obstante, si los miembros de una partícula agujero negro; la energía requerida para hacer a las partículas reales es extraída del agujero negro.

 

Gran Colisionador de Hadrones (LHC por sus siglas en ingles). A las 14:22 del dia 23 de Noviembre del 2009, el detector ATLAS protones en el LHC, seguido del detector CMS, y mas tarde los detectores ALICE y LHCb. Estas primeras colisiones solo son para probar la sincronizacion de las colisiones de haces de protones con cada uno de los detectores, lo cual resultó  con éxito en cada uno de los experimentos y, marca un avance muy alentador hacia la tan esperada etapa de toma de datos donde se pueda buscar el Higgs, Super Simetria, Dimensiones Extras, y tantas otras cosas mas que surgen del intelecto humano.

Es sin duda, un momento para recordar, especialmente para aquellos que han invertido parte de su vida en un proyecto tan grande e  

Muchas han Pero, continuémos con la virtualidad de las partículas. La vida media de una partícula electrón y un positrón pueden existir durante unos 4×10-21 s, aunque un par de fotones de radio con longitud de onda de 300.000 km pueden vivir hasta un segundo.

En realidad, lo que llamamos espacio vacío, está rebosante de partículas virtuales que bullen en esa “nada” para surgir y desaparecer continuamente en millonésimas de segundo.  ¡los misterios del Universo!

 

Planck, era de.

En la teoría del Big Bang, fugaz periodo de tiempo entre el propio Big Bang y el llamado Tiempo de Planck, cuando el Universo tenía 10-43 segundo de edad y la temperatura era de 1034 k.

Durante este periodo, se piensa que los efectos de la Gravitación cuántica fueron dominantes.  La comprensión teórica de esta fase es virtualmente inexistente.

Plasma.

                                                                 El plasma en remanentes de Supernova

Según algunos el cuarto estado de la materia que consiste en electrones y otras partículas subatómicas sin ninguna estructura de un orden Se trata de un Gas altamente ionizado en el que el número de electrones libres es aproximadamente igual al número de iones positivos.  Como dije antes, a veces descrito como el cuarto estado de la materia, las plasmas aparecen en el espacio interestelar, en las atmósferas de las estrellas (incluyendo el Sol), en tubos de Debido a que las partículas en un plasma están cargadas, su comportamiento difiere en algunos aspectos a un gas.  Los plasmas pueden ser creados en un laboratorio calentando un gas a baja presión hasta que la energía cinética media de las partículas del gas sea comparable al potencial de ionización de los átomos o moléculas de gas.  A muy altas temperaturas, del orden de 50.000 K en adelante, las colisiones entre las partículas del gas causan una ionización en cascada de este.  Sin embargo, en algunos casos, como en lámparas fluorescentes, la temperatura permanece muy baja al estar las partículas del plasma continuamente colisionando con las paredes del recipiente, causando enfriamiento y recombinación.  En esos casos la ionización es solo parcial y requiere un mayor aporte de energía.

En los reactores termonucleares, es posible mantener una enorme temperatura del plasma confinándolo lejos de las paredes del contenedor usando El estudio de los plasmas se conoce como física de plasmas y, en el futuro, dará muy buenos beneficios utilizando en nuevas tecnologías como la nanotecnología que se nos viene encima y será el asombro del mundo.

 

Son muchos los mundos que pululan por las distintas galaxias del Universo, e incontables serán los que tengan vida

Pluralidad de mundos.

Hipótesis de que el Universo contiene otros planetas habitados aparte de la Tierra.

Desde tiempos inmemoriales, grandes pensadores de los siglos pasados, dejaron constancia de sus pensamientos y creencia de que, allá arriba, en los cielos, otras estrellas contenían mundos con diversidad de vida, como en el planeta Tierra.  Tales ideas, han acompañado al Hoy, con los conocimientos que poseemos, lo que sería una locura es precisamente pensar lo contrario.  ¡que estamos solos!

La Vía Lactea (una sola Galaxia de los cientos de miles de millones que pueblan el Universo), tiene más de 100.000 millones de estrellas.  Miles de millones de Sistemas Solares.  Cientos de miles de millones de planetas.  Muchos miles y miles de estrellas como el Sol de tamaño mediano, amarillas de tipo G.

¿Cómo podemos pensar que solo el planeta Tierra alberga vida?

 

Protogalaxia.

Galaxia en proceso de protogalaxia cercana, lo cual indica que todas o la mayoría de las galaxias se formaron hace mucho tiempo.

Los cientificos pensaban que no existía protón.

En 1968 se escubrieron nuevas particulas dentro del protón, las cuales fueron llamadas quarks.

Existen tres quarks dentro de cada protón, quarks se mantienen unidos entre sí mediante otras partículas llamadas guones.

 

Protón.

Partícula masiva del Grupo o familia de los Hadrones que se clasifica como Barión.  Esta hecho por dos quarks up y un quark down y es, consecuentemente una partícula masiva con 938,3 MeV, algo menos que la del neutron.  Su carga es positiva y su lugar está en el neutrones con la denominación de nucleones.

 

Este diagrama esquemático de un púlsar ilustra las líneas de Pulsar.

Fuente de púlsares desde que se descubriera el primero en 1.976.  Los púlsares son estrellas de neutrones en rápida rotación, con un diámetro de 20-30 km.  Las estrellas se hallan altamente magnetizadas (alrededor de 108 teslas), con el eje magnético inclinado con respecto, al eje de rotación.  La emisión de radio se cree que surge por la aceleración de partículas cargadas por encima de los polos magnéticos.

A medida que rota la estrella, un haz de ondas de radio barre la Tierra, siendo entonces observado el pulso, de forma similar a un faro.

Los periodos de los pulsos son típicamente de 1 s., pero varían desde los 1’56 ms (púlsares de milisegundo) hasta los cuatro con tres s. Estos periodos rotacionales van decreciendo a medida que la estrella pierde energía rotacional, aunque unos pocos púlsares jóvenes son propensos a súbitas perturbaciones conocidas como ráfagas.

Las medidas precisas de tiempos en los púlsares han revelado la existencia de púlsares binarios, y un púlsar, PSR 1257+12, se ha demostrado que está acompañado de objetos de masa planetaria.  Han púlsares, notablemente los púlsares del Cangrejo y Vela.

Se crean en explosiones de supernovas de estrellas supergigantes y otros a partir de enanas blancas, se piensa que puedan existir cien mil en la Vía Láctea.

 

Quasars.

Objeto con un alto desplazamiento al rojo y con apariencia de estrella, aunque es probablemente el núcleo activo muy luminoso de una galaxia muy distante.

El nombre es una contracción del ingles quasi stellar, debido a su apariencia estelar. Los primeros quasars descubiertos eran intensos fuentes de radio.

Debido a las grandes distancias indicadas por el desplazamiento al rojo del núcleo debe ser hasta 100 veces más brillante que la totalidad de una galaxia quasars varían en brillo en una escala de tiempo de semanas, indicando que esta inmensa cantidad de energía se origina en un volumen de unas pocas semanas-luz de longitud.  La fuente puede, por tanto, ser un disco de acreción alrededor de un agujero negro de 107 o 108 masas solares.

El primer quasar en ser identificado como tal en 1.963 fue la radiofuente 3c 273 con un desplazamiento al rojo de 0,158, siendo todavía el quasar más brillante, óptimamente hablando, observado desde la Tierra, con magnitud 13.  Miles de quasar han sido descubiertos desde entonces.  Algunos tienen desplazamiento al rojo tan grandes como 4,9, implicando que lo vemos tal como eran cuando el Universo tenía sólo una décima parte de la edad En esta brevísima reseña no puede dejarse constancia de todo lo que se sabe sobre quasars, sin embargo, dejamos los rasgos más sobresalientes para que el lector obtenga un conocimiento básico de estos objetos estelares.

Para finalizar la reseña diré que, algunas galaxias aparentemente normales pueden contener remanentes de actividad quasar en sus núcleos, y algunas galaxias Seyfert y galaxias Markarian tienen núcleos que son intrínsecamente tan brillantes como algunos quasars.

Existen algunas evidencias de que los quasars aparecen en los núcleos de los espirales, y es esa interacción con una galaxia vecina la que proporciona gas o estrellas al núcleo formado por un agujero negro masivo, alimentando así la emisión del quasar.  Salvo mejor parecer.

                                  ¿Qué es la radiación cósmica de Radiación cósmica de fondo.

Antes, hemos comentado por alguna parte que, se trata de emisión radio de microondas proveniente de todas las direcciones (isotrópica) y que corresponde a una curva de cuerpo negro.

Estas propiedades coinciden con las predichas por la teoría del Big Bang, como habiendo sido generada por fotones liberados del Big Bang cuando el Universo tenía menos de un millón de años (Universo bebé) de antigüedad.

La teoría del Big Bang también supone la existencia de radiaciones de fondo de neutrinos y gravitatoria, aunque aun no tenemos los medios para detectarlas.  Sin embargo, los indicios nos confirman que la teoría puede llevar todas las papeletas para que le toque el premio.

Últimamente se ha detectado que la radiación cósmica de fondo no está repartida por igual por todo el Universo, sino que, al contrario de lo que se podía esperar, su reparto es anisotrópico, el reparto está relacionado con la De todas lasm maneras, ¿No es una maravilla todo el Universo? El que nosotros, estemos aquí para contarlo así lo testifica.

emilio silvera.

Toda la materia está hecha de Quarks y Leptones

Hemos llegado a poder discernir la relación directa que vincula el tamaño, la energía de unión y la edad de las estructuras fundamentales de la Naturaleza. Sabemos de átomos infinitesimales y de cúmulos de galaxias de inmensidades de materia. Sin embargo, ambos, lo pequeño y lo grande, finalmente resultan ser la misma cosa: Quarks y Leptones. El asombro y el vértigo que siente el ser humano ante lo más grande y lo más pequeño generan en él una curiosidad inexplicable. Esa curiosidad le lleva a preguntarse por aquello que sobrepasa los límites del mundo que conoce a través de los sentidos.

Sabemos que las distancias y tamaños en el Universo son tan grandes que superan nuestra capacidad de comprenderlos y, así, cuando en un sitio solitario y alejado de las ciudades contaminadas lumínicamente, damos un paseo bajo una noche estrellada nos sentimos pequeños ante tanta inmensidad y, al mismo tiempo, nos sentimos grandes al saber que formamos parte de todo esto.   Curiosamente, en el extremo opuesto, pensar en lo más pequeño no nos hace sentirnos grandes. El mundo de los objetos diminutos parece que no existe porque no lo vemos, y sólo cuando se construyeron los primeros microscopios se pudo un mundo fascinante, poblado de células, bacterias, virus, moléculas e incluso átomos… El mundo invisible es tan infinito y fascinante como el Universo y aunque, por el hecho de no poder verlo, nos cueste imaginarlo y comprenderlo, es un reto acercarnos a la ” diversa grandeza” de lo pequeño.

                                                                                                                                         el mundo de lo muy pequeño

                                                           Las galaxias: el mundo de lo muy grande

El Universo nos fascina, nos cautiva, nos empequeñece a escalas increíbles… Observar el inmenso espacio que nos rodea, gracias a los avances tecnológicos que nos “acercan” esos objetos, mueve al ser humano a buscar respuestas a las preguntas más elementales un punto de vista filosófico, pero también nos lleva por el camino del descubrimiento científico. Un caminar constante hacia el conocimiento que no habría sido posible sin herramientas como los telescopios en el “universo” de lo muy grande y, el microscopio en el “universo” de lo muy pequeño.

Los nucleótidos (moléculas formadas por un azúcar y un grupo consistente en un átomo de fósforo con cuatro átomos de oxígeno, además de otro grupo llamado “base”) son los componentes esenciales de los ácidos nucleicos (ADN y ARN). El esquema es similar al de las proteínas, donde diferentes ácidos nucleicos son formados por nucleótidos con diferentes azúcares y distintas bases, pudiendo crearse largas cadenas moleculares a partir de moléculas bastante simples.

En el ADN, el azúcar del bloque básico de construcción es la desoxirribosa, lo que le da el de ácido desoxirribonucleico, existiendo sólo cuatro tipos de grupo base asociados a él: Adenina, Timina, Guanina y Citosina. Además, la molécula de ADN está formada por una doble cadena, donde los azúcares y los fosfatos se unen entre sí a lo largo de cada cadena, como si fueran los laterales de una escalera, mientras que las respectivas bases sirven de unión entre ambas, a modo de peldaños, permitiendo únicamente dos opciones de enlace: Adenina con Timina o Guanina con Citosina, constituyendo dicha secuencia el código genético en el que se organiza el funcionamiento celular.

 

Biomoléculas:  Son las moléculas que aparecen en los seres vivos

Las grandes moléculas de los sistemas vivos tienen una estructura modular mantenida mediante enlaces covalentes y formada esencialmente por tan sólo seis elementos químicos: Carbono, Hidrógeno, Nitrógeno, Oxígeno, Fósforo y Azufre.

Los azúcares (moléculas formadas en torno a un anillo de carbono, oxígeno e hidrógeno) son los bloques de construcción básicos de los carbohidratos. Los almidones y la celulosa están compuestos por cadenas de azúcares (glucosa), siendo utilizados los primeros como almacenamiento de energía y la celulosa como estructura de las paredes celulares vegetales. Las diferencias ambas moléculas son tan sutiles como pequeñas variaciones en los enlaces intermoleculares, pero el resultado es tan diferente que nuestro organismo, por ejemplo, puede digerir el almidón y no la celulosa.

Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene.

La cosmología sugiere que esta relación resulta del curso de la historia cósmica, que los quarks se unieron primero, en la energía extrema del big bang original, y que a medida que el Universo se expandió, los protones y neutrones compuestos de quarks se unieron formar núcleos de átomos, los cuales, cargados positivamente, atrajeron a los electrones cargados con electricidad negativa estableciéndose así como átomos completos, que al formaron moléculas.

Un núcleo atómico cualquiera está constituído básicamente por protones y neutrones. Sin embargo, por que algunos átomos (o isótopos) son estables como el 12C6 y otros como el 14C6 no son estables y sufren decaimiento radioactivo para estabilizarse.

En el núcleo de un átomo existen fuerzas (fuerzas nucleares) que mantienen los protones y neutrones ligados. Estas fuerzas deben ser suficientemente grandes contrabalancear las repulsiones eléctricas resultantes de la carga positiva de los protones.

Una vez que los neutrones no poseen carga eléctrica. Esto debe ocurrir explicar la existencia de núcleos atómicos estables. Generalmente se considera que un núcleo atómico es estable, cuando la relación neutrón-protón es igual a la carga del electrón negativa que compensa la positiva del protón y lo estabiliza.

No siempre podemos ver lo que está en el interior de la materia, de las cosas y de nosotros, y, cuando lo podemos contemplar, el asombro se apodera de nuestras mentes al ver la intrincada complejidad que subyace en lo más profundo que no siempre sabemos comprender.

Si es así, cuanto más íntimamente examinemos la Naturaleza, tanto más lejos atrás vamos en el tiempo. Alguna vez he puesto el ejemplo de mirar algo que no es familiar, el dorso de la mano, por ejemplo, e imaginemos que podemos observarlo con cualquier aumento deseado.

 

 Con un microscopio electrónico podremos llegar muy lejos en el universo de lo muy pequeño.

Con un aumento relativamente pequeño, podemos ver las células de la piel, una con un aspecto tan grande y complejo como una ciudad, y con sus límites delineados por la pared celular. Si elevamos el aumento, veremos dentro de la célula una maraña de ribosomas serpenteando y mitocondrias ondulantes, lisosomas esféricos y centríolos, cuyos alrededores están llenos de complejos órganos dedicados a las funciones respiratorias, sanitarias y de producción de energía que mantienen a la célula.

 

CÉLULAS DEL PLEXO COROIDEO: La inflada punta de estas células, con de cerilla, segrega el líquido cefalorraquídeo que protege al cerebro y a la médula espinal de las conmociones. El líquido, que baña el exterior del cerebro y llena los cuatro ventrículos del encéfalo, se produce en los vasos sanguíneos conocidos como plexo coroideo. Si el flujo de este líquido se bloquea y se empieza a acumular, el cerebro se hincha y puede llegar a producirse la hidrocefalia, una condición bastante grave.   Es como visitar otro universo que está dentro de nosotros.

Ya ahí tenemos pruebas de historia. Aunque esta célula particular solo tiene unos pocos años de antigüedad, su arquitectura se remonta a más de mil millones de años, a la época en que aparecieron en la Tierra las células eucariota o eucarióticas como la que hemos examinado.

Para determinar dónde obtuvo la célula el esquema que le indicó como formarse, pasemos al núcleo y contemplemos los delgados contornos de las macromoléculas de ADN segregadas dentro de sus genes. una contiene una rica información genética acumulada en el curso de unos cuatro mil millones de años de evolución.

Almacenado en un alfabeto de nucleótidos de cuatro “letras”- hecho de moléculas de azúcar y fosfatos, y llenos de signos de puntuación, reiteraciones para precaver contra el error, y cosas superfluas acumuladas en los callejones sin salida de la historia evolutiva-, su mensaje dice exactamente cómo hacer un ser humano, la piel y los huesos hasta las células cerebrales.

Si elevamos más el aumento veremos que la molécula de ADN está compuesta de muchos átomos, con sus capas electrónicas externas entrelazadas y festoneadas en una milagrosa variedad de formas, relojes de arena hasta espirales ascendentes como largos muelles y elipses grandes como escudos y fibras delgadas como puros. Algunos de esos electrones son recién llegados, recientemente arrancados átomos vecinos; otros se incorporaron junto a sus núcleos atómicos hace más de cinco mil millones de años, en la nebulosa de la cual se formó la Tierra.

Si elevamos el aumento cien mil veces, el núcleo de un átomo de carbono se hinchará hasta llenar el campo de visión. Tales núcleos átomos se formaron dentro de una estrella que estalló mucho antes de que naciera el Sol. Si podemos aumentar aún más, veremos los tríos de quarks que constituyen protones y neutrones.


EL ATOMO DE CARBONO: Por que es importante el átomo de carbono? El carbono es el elemento alrededor de el cual ha evolucionado la química de la vida. El carbono tiene cuatro electrones de valencia en su capa mas externa, uno de los cuales puede parearse con los de otros átomos que puedan completar sus capas electrónicas compartiendo electrones formar enlaces covalentes. Algunos de estos elementos son el nitrógeno, el hidrógeno y el oxigeno. Pero la característica mas admirable del átomo de carbono, que lo diferencia de los demás elementos y que confirma su papel fundamental en el origen y evolución de la vida, es su capacidad de compartir pares de electrones con otros átomos de carbono para formar enlaces covalentes carbono-carbono. Este fenómeno es el cimiento de la química orgánica. Las proteínas, por ejemplo, corresponden a una sola de esa gran variedad de estructuras formadas mediante el anterior mecanismo.

Si bien sabemos con certeza que los quarks y electrones son más pequeños que 10-18 metros, es posible que ellos no tengan volumen. También es posible que los quarks y electrones no sean fundamentales sino que estén compuestos de partículas más fundamentales. (Vaya! ¿Ésto nunca terminará?)

Los quarks han unidos desde que el Universo sólo tenía unos pocos segundos de edad. Que sepamos, junto con los electrones y neutrinos, son las partículas más pequeñas que existen pero…¿quién sabe?

Al llegar a escalas vez menores, también hemos entrado en ámbitos de energías de unión cada vez mayores. Un átomo puede ser desposeído de su electrón aplicando sólo unos miles de electrón-voltios de energía. Sin embargo, para dispersar los nucleones que forman el núcleo atómico se requieren varios millones de electrón-voltios, y para liberar los quarks que constituyen nucleón se necesitaría cientos de veces más energía aún.

Introduciendo el eje de la historia, esta relación da testimonio del pasado de las partículas: las estructuras más pequeñas, más fundamentales están ligadas por niveles de energía mayores porque las estructuras mismas fueron forjadas en el calor del big bang.

 

Sabíais que… ¿Los supercúmulos son grandes agrupaciones de pequeños cúmulos de galaxias, y se encuentran las estructuras más grandes del Universo? ¿Que la existencia de supercúmulos indica que las galaxias en nuestro Universo no están uniformemente distribuidas? ¿Que los supercúmulos varían en tamaño, hasta unos 108 años luz? ¿Que entremezclados entre ellos hay grandes espacios vacíos en los cuales existen pocas galaxias? ¿Que frecuentemente son subdivididos en grupos de cúmulos llamados nubes de galaxias? Sin embargo, toda esa imensidad, está hecha de pequeñas cositas que se llaman Quarks y Leptones.

 

Esto implica que los aceleradores de partículas, como los telescopios, funcionen como máquinas del tiempo. Un telescopio penetra en el pasado en virtud del tiempo que tarda la luz en desplazarse entre las estrellas; un acelerador recrea, aunque sea fugazmente, las que prevalecían en el Universo primitivo.

El acelerador de 200 kev diseñado en los años veinte por Cockroft y Walton reproducía algunos de los sucesos que ocurrieron alrededor de un día después del comienzo del big bang.

Los aceleradores construidos en los años cuarenta y cincuenta llegaron hasta la marca de un segundo. El Tevatrón del Fermilab llevó el límite a menos de una milmillonésima de segundo después del comienzo del Tiempo. El LHC proporcionara un atisbo del medio cósmico cuando el Universo tenía menos de una billonésima de segundo de edad. Si pudiéramos llegar hasta el momento mismo del Big Bang, ¿Qué nos impediría ir un poco más allá y ver de donde surgió todo?

es una edad bastante temprana: una diez billonésima de segundo es menos que un pestañeo con los párpados en toda la historia humana registrada. A pesar de ello, extrañamente, la investigación de la evolución del Universo recién nacido indica que ocurrieron muchas cosas aún antes, durante la primera ínfima fracción de un segundo.

Todos los teóricos han tratado de elaborar una explicación coherente de los primeros momentos de la historia cósmica. Por supuesto, sus ideas fueron esquemáticas e incompletas, muchas de sus conjeturas, sin duda, se juzgaran deformadas o sencillamente erróneas, pero constituyeron una crónica mucho más aclaradora del Universo primitivo que la que teníamos antes.

Emilio Silvera

El Universo de Ayer y el Universo de Hoy

Para los babilonios,  incluso la existencia del universo era un hecho contingente, algo que podía suceder. Estamos aquí porque Marduk ganó su batalla contra el monstruo. Si no hubiera sido así, todavía prevalecería el caos primordial. No hubiera habido ni tierra ni cielos y, por supuesto, seres humanos que se maravillasen ante la creación. Así, los aspectos más importantes del mundo dependen de suscesos a los que no se aplica ninguna ley inmutable.

 

Impresión de un Cilindro-sello babilónico en la que se aprecia la lucha de Marduk contra el monstruo serpentiforme Tiamat. Ya en aquella lejana época los miembros de nuestra especie dejaron muestras de su inmensa imaginación para describir las cosas que ellos “creían” que eran el significado de los fenómenos de la Naturaleza que traducían en dioses. Ahora nosotros, lo hacemos con “la materia oscura” y cosas similares.

El universo sólo podía ser controlado por los dioses, y los dioses sólo podían ser inducidos a atender a las necesidades humanas mediante el uso de rituales. Sospecho que los “universos de espíritus y dioses” proporcionaban mucha más gratificación emocional a los que creían en ellos de la que nuestro universo nos proporciona a nosotros que, habiendo llegado a comprender, más que gratificarnos lo que hace es asombrarnos y sólo nos gratifican los descubrimientos que de la Naturaleza vamos conquistando. Después de todo, el universo de los babilonios era un lugar en el que las cosas que sucedían eran muy humanas.

El atractivo de todas estas viejas creencias (de alguna manera) no ha desaparecido ni suqiera ahora, en nuestro tiempo actual. Una gran parte del movimiento contracultural de los sesenta implicaba un rechazo de la cultura racional y científica de la Norteamérica moderna que comenzaba a florecer con fuerza y una vuelta a una visión más mítica del universo.

No obstante, por muy satisfactorios emocionalmente que fueran los viejos sistemas, dejaba mucho que desear en el terreno intelectual. Batalla o no batalla en el mundo inferior, el Sol sale cada mañana. Los movimientos de las estrellas y de los planetas pueden depender del humor de los dioses, pero son regulares y predecibles. De algún modo, la yuxtaposición de las verdades muy personales y contingentes de los antiguos universos con el comportamiento regular de los cielos parece difícil de explicar, al menos para las mentes del siglo XXI.

                   Tales de Mileto dejó a un lado la Mitología y aplicó la Lógica

Fueron los griegos los primeros que concibieron un universo algo parecido al que concebimos hoy. Sus ideas se caracterizaban por un vivo escepticismo. Por ejemplo,  en una generación anterior a Arquitas, el historiador Herodoto hizo un viaje por Egipto. Le mostraron un templo en el que los sacerdotes ponían comida para el dios todas las noches. La comida había desaparecido siempre por la mañana, hecho que presentaban a Herodoto como demostración de la existencia del dios.

“Yo no ví ningún dios -comentó-, pero ví muchas ratas junto a la base de la estatua.”

¡Es difícil no encontrar simpático a alguien que piensa de ese modo!

Este tipo de mente inquisitiva condujo a los griegos a un universo que era notablemente diferente de los que hemos podido conocer que representaban civilizaciones más antiguas. Y su trabajo era tan impresionante que siguió siendo la versión aceptada de los cielos hasta después del Renacimiento, casi mil quinientos años y, ante eso, me tengo que preguntar: ¿Durará tánto tiempo nuestra actual visión del Universo?

Y llegó Ptolomeo

ptolomeo Hiparco Claudio PtolomeoNació en Tolemaida Hermía, en el Alto Egipto. Fallece en Alejandría, ciudad en donde desarrolló toda su actividad. Está considerado como uno de los personajes más relevante e importante de la historia. Astrónomo, matemático y geógrafo. Ptolomeo propuso el sistema geocéntrico como la base de la mecánica celeste que persistió durante más de 1400 años. Sus teorías, investigaciónes y explicaciones astronómicas prevalecieron en el pensamiento científico hasta el siglo XVI. Esta considerado como el último científico más importante de la antigüedad y su fama se debe a su exposición del sistema ptolomaico. Recopiló los conocimientos científicos de su época, añadiendo sus observaciones y las de Hiparco de Nicea. Escribo una obra conocida con el nombre de “Almagesto” (Ptolomeo la había denominado Sintaxis Matemática) realizada en 13 volúmenes, llegando a Europa en una versión traducida al árabe.

 

 

 

escuela ateniense copiar Hiparco Claudio Ptolomeo

 

 

En la explicaciones del Almagesto del sistema ptolomaico,  la Tierra se encuentra situada en el centro del Universo y el Sol, la Luna y los planetas giran en torno a ella arrastrados por una gran esfera llamada “Primum Movile”, mientras que la Tierra es esférica y estacionaria. Las estrellas están situadas en posiciones fijas sobre la superficie de dicha esfera.

Claudio Tolomeo, es el hombre en el que se piensa siempre como expositor de la astronomía griega, vivió en Alejandría en el siglo II d. C., y trabajaba en el Museo de Alejandría que funcionaba en cierto modo como un moderno centro de investigación y laboratorio gubernamental.

Tolomeo recopiló las mediciones de sus antecesores griegos y babilonios, hizo algunas por sí mismo y utilizó el trabajo previo para producir un modelo de universo que explicara todo lo que había sido observado y, como es natural, si pensamos en los medios que tenía, puso a la Tierra en el centro, mientras que esferas de cristal giraban siendo portadoras del Sol, de la Luna, de los planetas y de las estrellas.

Explicar aquí ahora lo que era el universo telemaico no parece lo más adecuado por lo sabido del tema. Sin embargo, sí es preciso decir que, estaba basado en el supuesto tácito del  geocentrismo, y, aunque algunos científicos griegos, como Pitágoras e Hiparco, sugirieron que el Sol no debería ocupar un lugar central en el cosmos, pocos hicieron caso a sus argumentos.

Galileo Galilei (1564 - 1642) y Johannes Kepler (1571 - 1630)

 Galileo Galilei (1564 – 1642) y Johannes Kepler (1571 – 1630)

Después de quello, como todos con0cemos, llegaron Galileo, Tycho Brahe y Kepler…Newton y Einstein que nos trajeron un Universo muy diferente. Se explicaba las órbitas de los planetas, se descubrió la Gravedad causada por las grandes masas como las galaxias, estrellas y planetas, se habló de cómo se curvaba el espaciotiempo, se conocieron los cuásars, las estrellas de neutrones y los agujeros negros y, en definitiva, supimos que estamos en un universo en expansión donde la materia y la energía está representada por la materia y las interacciones de fuerzas que interactúan entre sí.

Es cierto, el acto de explorar modifica la perspectiva del explorador. Así ha sucedido con la investigación científica de los extremos de las escalas, desde la grandiosa extensión del espacio cosmológico hasta el “mundo” infinitesimal y vertiginosamente enloquecido de las partículas subatómicas y del átomo.

La exploración del ámbito de las galaxias extensió nuestro alcance de visión en un factor de 1026 veces mayor que nuestra propia escala humana, y produjo la revolución que llamamos relatividad, la cual reveló que la visión newtoniana del mundo sólo era una imagen local y pequeña en un universo más vasto donde el espacio es curvo y el tiempo se hace flexible. La exploración del dominio subatómico nos llevó lejos en el ámbito de lo muy pequeño, a unos 10-15 de la escala humana, y también significó una revolución, la de la física cuántica que vino a cambiarlo todo en ese dominio infinitesimal.

electricidad

Aunque la semilla la puso Planck en 1900, fue a partir de 1930 cuando la mecánica cuántica se aplicó con mucho éxito a problemas relacionados con núcleos atómicos, moléculas y materia en estado sólido. La mecánica cuántica hizo posible comprender un extenso conjunto de datos, de otra manera enigmáticos. Sus predicciones han sido de una exactitud notable. Ejemplo de ésto último es la increíble precisión de diesciciete cifras significativas del momento magnético del electrón calculadas por la EDC (Electrodinámica Cuántica) comparadas con el experimento.

dibujo26ene2008a.jpg

Imagen ilustrativa de la dualidad onda-partícula, en el que se aprecia cómo un mismo fenómeno puede ser percibido de dos modos distintos. La mecánica cuántica describe, en su visión más ortodoxa, cómo en cualquier sistema físico –y por tanto, en todo el universo- existe una diversa multiplicidad de estados, los cuales habiendo sido descritos mediante ecuaciones matemáticas por los físicos, son denominadoss estados cuánticos. De esta forma la mecánica cuántica puede explicar la existencia del átomo y desvelar los misterios de la estructura atómica, tal como hoy son entendidos; fenómenos que no puede explicar debidamente la física o más propiamente la mecánica clásica.

Este es el Universo que hoy podemos ver gracias a los avances de la tecnología y los nuevos conocimientos

¡Qué lejos quedan los babilonios y el universo de Marduk!

¡Qué simple se ve ahora el universo de Tolomeo!

El desarrollo de la relatividad especial creó un escenario nuevo. Una de las conclusiones del trabajo de Eisntein es que ningún objeto -de hecho, ninguna influencia o perturbación de ninguna clase- puede viajar a una velocidad mayor que la de la luz. Sin embargo, como hemos podido leer muchas veces, la teoría universal de la gravedad de Newton, que experimentalmente funciona tan bien y es tan grata para la intuición, habla de influencias que se transmiten en el espacio a grandes distancias instantáneamente. De nuevo fue Eisntein el que intervino en el conflicto y lo resolvió ofreciendo un nuevo concepto de la Gravedad en su teoría general de la relatividad.

Así, nuestro mundo cambió de nuevo y ahora, se rige por estas dos leyes: Cuántica y Relativista que son las que marcan las pautas de la Ciencias físicas y Cosmológicas. ¿Cómo veremos el Universo dentro de un milenio? Seguramente nos parecerá el universo de hoy, tan atrasado como nos parece hoy el de Tolomeo.

No es sólo que el Espacio y el Tiempo estén influidos por el estado del movimiento del observador, sino que, además, pueden alabearse y curvarse como respuesta a la presencia de materia o energía. Tales distorsiones en la estructura del Espacio y el Tiempo, transmiten la fuerza de Gravedad de un lugar a otro que, más cercano o más lejano, recibe la influencia de esta fuerza fundamental. Así que, desde entonces no se puede ya pensar que el Espacio y el Tiempo sean un telón de fondo inamovible e inerte en el que se desarrollan los sucesos del universo; al contrario, según la relatividad especial y la relatividad general, son actores de primera fila que desempeñan un papel íntimamente ligado al desarrollo de todos los hechos que en el universo ocurren.

Una vez más  el modelo se repite: el descubrimiento de la relatividad general, aunque resuelve un cnflicto, nos lleva a otro. A lo largo de tres décadas a partir de 1900, los físicos desarrollaron la mecánica cuántica en respuesta a varios problemas  evidentes que se pusieron de manifiesto cuando los conceptos de la física del siglo XIX se aplicaron al mundo microscópico. Como he mencionado anteriormente, el tercer conflicto, el más trascendental, surge de la incompatibilidad entrem la mecánica cuántica y la relatividad general. La forma geométrica ligeramente curvada del esapcio, que aparece a partir de la relatividad general, es incompatible con el comportamiento microscópico irritante y frenético del universo que se deduce de la mecánica cuántica.

                                 Un amigo tiene en sus manos la teoría luz-luz… ¿será el futuro?

Y, volvemos otra vez al principio: Tenemos que persistir en aquellos trabajos de los años ochenta, cuando se presentó la solución que ofrecía la teoría de cuerdas para este tercer conflicto o problema. En realidad, es el mayor conflicto que se nos presenta en la física moderna. Necesitamos ya, para poder explicar muchas cosas y seguir avanzando, una teoría cuántica de la gravedad. Estamos parados, no podemos avanzar como sería deseable y, desde luego muchas son las iniciativas que se intentan: Teoría de Cuerdas, Teoría Luz-luz (energía-masa) y otras muchas que están, en la mente de los mejores físicos del mundo pero que no acaban de germinar.

Esperémos que pronto salgan a la luz esas ideas y pensamientos que nos lleven hacia una ciencia física del futuro en la que, nuevos paradigmas vengan a jubilar (cariñosamente lo digo) a estas dos que ahora son el soporte de todo: ¡Cuántica y Relatividad! y, me pregunto yo: ¿Habrá algo más después de esas dos teorías que, llevando un siglo en el candelero, piden a gritos que las jubilémos?

emilio silvera

En el comienzo de todo ¿Cómo sería en realidad?

¡El Universo primitivo!

Es ahí, en lo que creemos que fue el Universo primitivo, donde reside el estudio de una cosmología en un tiempo muy poco después del supuesto Big Bang. Las teorías del universo primitivo han dado lugar a interacciones muy beneficiosas entre la cosmología y la teoría de partículas elementales. Especialmente, la Teoría de Grab Unificación. Debido a que en el Universo primitivo había unas temperaturas muy altas, muchas de las simetrías rotas en las teorías gauge se vuelven simetrías no rotas a esas temperaturas. A medida que el universo se enfrío después de la gran explosión se piensa que hubo una secuencia de transiciones de estados de simetría rota.

Antes de alrededor de un minuto y cuarenta segundos desde el comienzo del tiempo,  no hay núcleos atómicos estables.  El nivel de energía en el ambiente es mayor que la energía de unión nuclear. Por consiguiente, todos los núcleos que se forman, se destruyen de nuevo rápidamente.

Alrededor de un segundo desde el comienzo del tiempo, llegamos a la época de desacoplamiento de los neutrinos.  Aunque en esa época el Universo es más denso que las orcas (y tan caliente como la explosión de una bomba de hidrógeno), ya ha empezado a parecer vacío a los neutrinos.  Puesto que los neutrinos sólo reaccionan a la fuerza débil, que tiene un alcance extremadamente corto, ahora pueden escapar de sus garras y volar indefinidamente sin experimentar ninguna otra interacción.

Así, emancipados, en lo sucesivo son libres de vagar por el Universo a su manera indiferente, volando a través de la mayor parte  de la materia como sino existiese. (Diez trillones de neutrinos atravesarán sin causar daños el cerebro y el cuerpo del lector en el tiempo que le lleve leer esta frase.  Y en el tiempo en que usted haya leído esta frase estarán más lejos que la Luna).

En menos de un siglo, el neutrino pasó de una partícula fantasma – propuesta en 1930 por el físico austríaco Wolfgang Pauli (1900-1958) a explicar el balance de energía en una forma de radioactividad,  el llamado decaimiento beta, en una sonda capaz de escrutar el interior de estrellas y de la propia Tierra.

 

 

 

 

De esa manera, oleadas de neutrinos liberados en un segundo después del big bang persiste aún después, formando una radiación cósmica de fondo de neutrinos semejante a la radiación de fondo de microondas producida por el desacoplamiento de los fotones.

Si estos neutrinos “cósmicos” (como se los llama para diferenciarlos de los neutrinos liberados más tarde por las supernovas) pudiesen ser observador por un telescopio de neutrinos de alguna clase, proporcionarían una visión directa del Universo cuando sólo tenía un segundo.

A medida que retrocedemos en el tiempo, el Universo se vuelve más denso y más caliente, y el nivel de  estructura que puede existir se hace cada vez más rudimentario.

      Todo esto llegaría más tarde con la evolución de aquellas estrellas primeras

Por supuesto, en ese tiempo, no hay moléculas, ni átomos, ni núcleos atómicos, y, a 10-6 (0.000001) de segundo después del comienzo del tiempo, tampoco hay neutrones ni protones.  El Universo es un océano de quarks libres y otras partículas elementales.

Si nos tomamos el trabajo de contarlos, hallaremos que por cada mil millones de antiquarks existen mil millones y un quark.  Esta asimetría es importante.  Los pocos quarks en exceso destinados a sobrevivir a la aniquilación general quark-antiquark formaran todos los átomos de materia del Universo del último día.  Se desconoce el origen de la desigualdad; presumiblemente obedezca a la ruptura de una simetría materia antimateria en alguna etapa anterior.

Nos aproximamos a un tiempo en que las estructuras básicas de las leyes naturales, y no sólo las de las partículas y campos cuya conducta dictaban, cambiaron a medida que evolucionó el Universo.

La primera transición semejante se produjo en los 10-11 de segundo después del comienzo del tiempo, cuando las funciones de las fuerzas débiles y electromagnéticas se regían por una sola fuerza, la electrodébil.  Ahora hay bastante energía ambiente para permitir la creación y el mantenimiento de gran número de bosones W y Z.

Escribe, comparte, publica la idea que tienes

Nuestras mentes supo llegar a poder discurrir cuestiones profundamente escondidas por la Naturaleza y, desentrañamos sus secretos para saber cómo era el mundo en el que estamos inmersos y que, como nosotros mismos, forma parte de ese universo físico que tratamos de desvelar para conocer el por qué de las cosas, de la materia, las estrellas y galaxías y, ¿por qué no? También de nosotros mismos.

Pues bien, estas partículas W y Z – las mismas cuya aparición en el acelerador del CERN verificó la teoría electrodébil – son las mediadoras intercambiables en las interacciones de fuerzas electromagnéticas y débiles, lo que las hace indistinguibles.  En ese tiempo, el Universo está gobernando sólo por tres fuerzas: la gravedad, la interacción nuclear fuerte y la electrodébil.

Más atrás de ese tiempo nos quedamos en el misterio y envueltos en una gran nebulosa de ignorancia.  Cada uno se despacha a su gusto para lanzar conjeturas y teorizar sobre lo que pudo haber sido.   Seguramente, en el futuro, será la teoría M (de supercuerdas) la que contestará esas preguntas sin respuestas ahora.

                               Sí, se formaron las primeras estrellas y galaxias

En los 10-35 de segundo desde el comienzo del tiempo, entramos en un ámbito en el que las condiciones cósmicas son aún menos conocidas.  Si las grandes teorías unificadas son correctas, se produjo una ruptura de la simetría por la que la fuerza electronuclear unificada se escindió en las fuerzas electrodébil y las fuertes.  Si es correcta la teoría de la supersimetría, la transición puede haberse producido antes, había involucrado a la gravitación.

En el universo temprano la primera materia (hidrógeno y Helio) era llevada por la fuerza de gravedad a conformarse en grandes conglomerados de gas y polvo que interacioban, producían calor y formaron las primeras estrellas.

Elaborar una teoría totalmente unificada es tratar de comprender lo que ocurrió en ese tiempo remoto que, según los últimos estudios está situado entre 15.000 y 18.000 millones de años, cunado la perfecta simetría que, se pensaba, caracterizó el Universo, se hizo añicos para dar lugar a los simetrías rotas que hallamos a nuestro alrededor y que, nos trajo las fuerzas y constantes Universales que, paradójicamente, hicieron posible nuestra aparición para que ahora, sea posible que, alguien como yo esté contando lo que pasó.

               Lo cierto es que no sabemos que pudo pasar antes del Tiempo de Planck

Pero hasta que no tengamos tal teoría no podemos esperar comprender lo que realmente ocurrió en ese Universo bebé.  Los límites de nuestras conjeturas actuales cuando la edad del Universo sólo es de 10-43 de segundo, nos da la única respuesta de encontrarnos ante una puerta cerrada.

Del otro lado de esa puerta está la época de Plank, un tiempo en que la atracción gravitatoria ejercida por cada partícula era comparable en intensidad a la fuerza nuclear fuerte.

Así que, llegados a este punto podemos decir que la clave teórica que podría abrir esa puerta sería una teoría unificada que incluyese la gravitación, es decir, una teoría cuántica-gravitatoria que uniese, de una vez por todas, a Planck y Einsteins que, aunque eran muy amigos, no parecen que sus teorías (la Mecánica Cuántica) y (la Relatividad General) se lleven de maravilla.

Si miramos las imágenes de arriba, podemos ver una célula de nuestro cerebro que se compara con una imagen del universo y ambas, nos parecen la misma cosa o, al menos, cosas muy aproximadas en su estructura y ramificaciones. No parece más que llevásemos un universo en nuestras mentes y, en realidad, aunque sea en pequeñito, así parece ser. Todo cuanto existe, como en el Universo ocurre, está también en nuestras mentes aunque… ¡de otra manera!

Finalmente podríamos decir que estamos formando parte de algo grande y que nos encontramos en una encrucijada de caminos a tomar: El del conocimiento y el de la destrucción. No hemos llegado a comprender de manera cierta nuestra presencia aquí, en tan imenso panorama formado por un Universo lleno de estrellas y galaxias y de mundos y de fuerzas y energías y de espacio-tiempo “infinito” y, dentro de toda esa vorágine, estamos nosotros, unos seres apenas llegados que, en nuestra ilimitada egolotria, nos creemos los señores del Universo cuando no somos más que unos seres desvalidos a merced de las circunstancias naturales y del azar.

Bueno, puede que así sea pero, mientras tomamos conciencia de todo ello, sigamos aprendiendo cosas del Universo, de la Naturaleza, de la Materia y, de nosotros mismos que, al fín y al cabo, Universo somos.

emilio silvera

Sin rumbo fijo por el Universo

La región de formación estelar S106

La estrella masiva IRS 4 comienza a desplegar sus alas. Nacida hace sólo unos 100.000 años, el material expulsado de esta estrella “recién” nacida ha formado la nebulosa llamada Sharpless 2-106 (S106) que se ve en la imagen. El gran disco de polvo y de gas que orbita la fuente infrarroja IRS 4, visible en rojo oscuro cerca del centro de la imagen, da a la nebulosa la forma de un reloj de arena o de una mariposa.

El gas de S106 cerca de 4 IRS actúa como una nebulosa de emisión ya que emite luz después de haber sido ionizado, mientras que el polvo lejano procedente de IRS 4 refleja la luz de la estrella central y, por tanto, actúa como una nebulosa de reflexión. El examen detallado de imágenes como ésta ha podido desvelar la existencia de cientos de estrellas enanas marrones de masa baja que rondan por el gas de la nebulosa. S106 se extiende unos 2 años luz y se encuentra a unos 2.000 años-luz de distancia en la constelación del Cisne.

El nacimiento y evolución de las estrellas depende de su masa. Se forman a partir de una nebulosa que se compone de partículas de polvo e hidrógeno gas. La gravedad une este material en glóbulos, cuyos centros se calientan hasta que el hidrógeno comienza a convertirse en helio por reacciones nucleares.

Después de decenas de millones de años, la estrella central, con más masa, empieza a agotar su combustible nuclear y explota como una supernova, dejando tras ella un púlsar. Después de unos diez mil millones de años. Una estrella con menos masa, comienza también a llegar al final de su vida. Este núcleo se desploma, formando una nebulosa planetaria.

Esta nebulosa llena de color, denominada NGC 604, es uno de los mayores y mejores ejemplos de nacimiento estelar en una galaxia cercana. La nebulosa NGC 604 es semejante a otras regiones de formación de estrellas en la Vía Láctea que nos resultan familiares, como la nebulosa de Orión, pero en este caso nos hallamos ante una enorme extensión que contiene más de 200 brillantes estrellas azules inmersas en una resplandeciente nube gaseosa que ocupa 1.300 años-luz de espacio, unas cien veces el tamaño de la Nebulosa de Orión, la cual aloja exactamente cuatro estrellas brillantes centrales. Las luminosas estrellas de NGC 604 son extremadamente jóvenes, ya que se han formado hace tres millones de años.

La mayor parte de las estrellas calientes y masivas componen un amplio cúmulo en el interior de una cavidad cercana al centro de la nebulosa. Los vientos de las estrellas azules, así como las explosiones de supernovas, son los agentes de tal erosión. Las más pesadas estrellas en NGC 604 superan en 120 veces la masa de nuestro Sol, y su temperatura superficial alcanza unos 40.000º K. Un torrente de radiación ultravioleta fluye desde estos lugares, lo que hace brillar el gas nebular circundante.

                                                                                            Galaxia M 33

La nebulosa NGC 604 está en un brazo espiral de la cercana galaxia M33, a 2.7 millones de años-luz hacia la constelación del Triángulo. M33 forma parte del Grupo Local de galaxias, que también incluye a la Vía Láctea y la Galaxia de Andrómeda; como ésta, puede ser observada a través de unos binoculares. Fue registrada por primera vez en 1.784 por el astrónomo inglés William Herschel. En nuestro Grupo Local, sólo la Nebulosa de la Tarántula en la Gran Nube de Magallanes excede a NGC 604 en el número de estrellas recientes, a pesar de su tamaño ligeramente inferior.

Estos delicados filamentos son residuos de una explosión estelar ocurrida en la Gran Nube de Magallanes, una pequeña galaxia visible en el cielo austral, situada a 160.000 años-luz de distancia, que acompaña a la Vía Láctea. Proceden de la muerte de una estrella masiva en una explosión de supernova, cuya fenomenal luz alcanzaría la Tierra hace varios miles de años. Este material filamentario será finalmente reciclado para la construcción de nuevas generaciones estelares en la Gran Nube de Magallanes. Nuestro propio Sol y planetas están constituídos de residuos similares de supernovas que explotaron en nuestra galaxia hace miles de millones de años.

Esta estructura alberga una estrella de neutrones muy potente que puede ser el resto central de la explosión. Resulta muy común para el núcleo de una estrella que explota como supernova, disfrutar de una nueva vida en forma de estrella de neutrones giratoria, o púlsar, tras despojarse de sus capas externas. En el caso de N49, no sólo nos hallamos ante una simple estrella de neutrones que gira cada 8 segundos: tambien posee un robusto campo magnético mil millones de veces más potente que el campo magnético terrestre. Esta notable característica coloca a esta estrella en la clase exclusiva de objetos denominados “magnetars”.

El 5 de Marzo de 1.979 esta estrella de neutrones desencadenó un episodio histórico de explosión de rayos gamma que fue detectado por numerosos satélites. Los rayos gamma portan millones de veces más energía que los fotones visibles, pero la atmósfera terrestre nos protege bloqueando los procedentes del espacio exterior. Desde la estrella de neutrones de N 49 ha surgido emisión de rayos gamma en varias ocasiones posteriores.

              Así se verá la Tierra cuando el Sol se convierte en una gigante roja

La Tierra, un día lejano aún en el tiempo (4.500 Millones de años) se verá engullida por el Sol, que una vez agotado su combustible nuclear, se convertirá en una gigante roja como la que arriba podemos contemplar y, en su crecimiento, arrasará los planetas que queden dentro de sus dominios.

Una gigante roja alcanza su mayor tamaño cuando todo su hidrógeno central se ha convertido en helio. En esta época se expande hasta el punto de devorar los planetas que pudiera haber a su alrededor, si tenia un sistema planetario.

           Restos filamentarios de una supernova

La supernova es un evento poco común. En cada galaxia se suelen dar una explosión cada 200 años. En estas explosiones, la mayor parte de la masa de la estrella original se lanza a grandes velocidades. Durante algunos días, la supernova radía la misma energía que durante toda su vida, llegando a brillar más que el conjunto de estrellas que residen en su galaxia. Con el paso de los años, el remanente de la supernova se esparcirá, creando una nebulosa.

La foto del Telescopio Espacial Hubble muestra los restos de la supernova M1 (NGC 1952).

El telescopio Hubble continua revelando llamativos e intrincados tesoros en las cercanías; en este caso, una intensa región de formarción de estrellas conocida como la Gran Nebulosa de Orion. Esta joya es un lazo chocante alrededor de luna estrella muy joven, LL Orion, mostrada en esta foto.

Estrella joven en Orión

Esta estructura en forma de arco es en realidad una onda de choque de medio año-luz de tamaño, creada cuándo el viento estrelar procedente de la estrella joven LL Orionis colisiona con el caudal procedente de la Nebulosa de Orion. A la deriva, dentro de la cuna estrellar de Orion, y todavía en su fase de formación, la estrella variable LL Orionis genera un viento más energético que el viento de nuestro propio Sol, una estrella de mediana edad. Como que el rápido viento estrellar choca con el gas que se mueve lentamente, se forma un frente de choque análogo a la ola que crea la proa de un barco desplazándose a través del agua o de un avión viajando a velocidad supersónica.

Una gran cantidad de estrellas no son solitarias, sino que pertenecen a sistemas formados por dos o más estrellas, en los que puede resultar difícil la formación de planetas debido a la inexistencia de órbitas estables: los protoplanetas se verían arrastrados en una y otra dirección por las influencias gravitatorias de las diferentes estrellas. En estos sistemas es probable que lo único que se forme sean pedazos de escombros cósmicos como los que existen en nuestro cinturón de asteroides.

El proceso de formación de planetas es muy eficiente. Inicialmente, las colisiones entre los planetésimos ocurren a baja velocidad, así que colisionan objetos que tienden a fusionarse y crecer. A una distancia Tierra-Sol típica, un objeto de 1 km tarda sólo unos 1000 años en crecer hasta 100 km. Otros 10.000 años producen protoplanetas de casi 1000 km de diámetro, los cuales crecen en 10.000 años más hasta protoplanetas de casi 2000 km de diámetro. Así, objetos del tamaño de la Luna pueden formarse en tan poco tiempo como 20.000 años.

A medida que los protoplanetas se hacen más grandes y masivos, su gravedad crece. Cuando algunos objetos alcanzan un tamaño de unos 1000 km, empiezan a atraer al resto de objetos más pequeños. La gravedad atrae a los acúmulos de roca del tamaño de asteroides, a velocidades cada vez más altas. Van tan rápido que cuando colisionan, no se fusionan sino que se pulverizan. Mientras los protoplanetas más grandes continúan creciendo, el resto se convierten mutuamente en polvo.

El núcleo del cúmulo globular NGC 6397 parece un cofre repleto de relucientes joyas. Donde los astrónomos han descubierto la existencia de veloces enanas blancas. Está situado a 8.200 años-luz hacia la constelación austral del Ara, y se encuentra entre los más cercanos al Sistema Solar. Las estrellas se encuentran aquí muy juntas, con un espacio entre ellas de unas semanas-luz, mientras que nos separan cuatro años-luz de la estrella más cercana al Sol, Alfa Centauri. La densidad estelar supera en este lugar un millón de veces las proximidades de nuestro sistema.

Las estrellas de NGC 6397 se hallan en constante movimiento y se producen muchas colisiones. Aún así, transcurren millones de años antes de que se produzca alguna colisión. Estas imágenes del Hubble tienen como objetivo la investigación de los remanentes de los choques estelares y encuentros cercanos. Tras un choque directo, dos estrellas pueden fusionarse y generar una nueva estrella denominada “azul rezagada”; estas jóvenes estrellas, muy calientes y brillantes, destacan entre los viejos astros que componen la mayoría de un cúmulo globular.

Si dos estrellas se acercan lo suficiente, pero sin llegar a chocar, puede producirse una captura y ambas permanecerán gravitacionalmente unidas. Un tipo de binaria originada de este modo son las “variables cataclísmicas”: una estrella normal que consume hidrógeno nuclear en compañía de una enana blanca. La enana blanca extrae material de la superficie de su compañera; este material conforma un disco de acreción que ciñe a la enana blanca para caer finalmente hasta su superficie. Como resultado observamos una variación en el brillo estelar. El calor producido mediante el proceso de acrección genera tambien grandes cantidades de luz ultravioleta y azul.

Como si fuera una mariposa, esta estrella enana blanca comienza su vida envolviéndose en un capullo. Sin embargo, en esta analogía, la estrella sería más bien la oruga y el capullo de gas expulsado la etapa verdaderamente llamativa y hermosa.

La nebulosa planetaria NGC 2440 contiene una de las enanas blancas conocidas más calientes. La enana blanca se ve como un punto brillante cerca del centro de la fotografía. Eventualmente, nuestro Sol se convertirá en una “mariposa enana blanca”, pero no en los próximos 5 mil millones de años.

Las estrellas conocidas como “enanas blancas” pueden tener diámetros de sólo una centésima del Sol. Son muy densas a pesar de su pequeño tamaño.

                                  La la Nebulosa Esquimal en rayos X

La Nebulosa Esquimal NGC 2392, también llamada “huevo podrido”, se encuentra en la constelación de Geminis, a unos 5000 años luz de la Tierra. La imagen se obtuvo el 10 de enero del 2000, después de la reparación efectuada por los astronautas en el telescopio espacial Hubble. En la foto, el nitrógeno se ve de color rojo, el hidrógeno verde, el oxígeno azul y el helio violeta.

La NGC 2392 es una nebulosa planetaria. En realidad, las nebulosas llamadas planetarias poco tienen que ver con los planetas. Hoy en día se denomina nebulosa planetaria a burbujas de gases expulsados por estrellas de tipo solar moribundas.

Esta nebulosa planetaria fue estudiada por vez primera por William Herschel en 1787. Según parece, durante la fase de gigante roja, la estrella central originó un anillo ecuatorial denso que se expande a unos 115.000 km/h. Más tarde, al hacer explosión la estrella central (hace 10.000 años), se produjo un viento estelar de alta velocidad (1,5 millones de km/h) que, al chocar con el anillo, dió lugar a las dos burbujas o lóbulos polares en rápida expansión que aquí se observan parcialmente superpuestos. La capucha de piel del esquimal es en realidad un conjunto de objetos con forma de cometa dispuestos radialmente. El diámetro de los lóbulos polares es aproximadamente de medio año luz.

  Aquí la vemos con nueva luz cuando el Hubble se acercó a las inmediaciones de la “cabeza de caballo” en Orión

Las Nebulosas planetarias adoptan variadas y extrañas formas. En último lugar vemos a MyCn18 o Nebulosa Reloj de Arena. Se encuentra a 8.000 años luz de distancia. MyCn18 se ve formada por dos anillos grandes y uno más pequeño, con un aspecto muy parecido al de la supernova 1987A. Los diferentes componentes de esta estructura en forma de reloj de arena no están alineados. Por fuerza, este descentramiento, que también se ha observado en el núcleo de algunas galaxias, alrededor de lo que podría ser un agujero negro, ha de tener alguna explicación, desconocida por el momento.

La estrella central de esta nebulosa planetaria con forma de reloj de arena se está muriendo. Con su combustible nuclear agotado, esta breve y espectacular fase final en la vida de una estrella tipo Sol ocurre cuando sus capas externas son expulsadas. Su núcleo se convierte en una fría y desvaneciente enana blanca.

En 1995, Los astronómos utilizaron el Telescopio Espacial Hubble (HST) para tomar una serie de imágenes de nebulosas planetarias, incluida esta. La nitidez sin precedentes de las imágenes del Hubble revelan detalles del proceso de expulsión de la nebulosa y puede ayudar a resolver el misterio sobre la variedad de complejas formas y simetrías de las nebulosas planetaria

La Nebulosa Eta Carina (o Gran Nebulosa Carina) es una enorme nebulosa difusa, mucho más grande que la famosa Nebulosa de Orión. En la foto, nubes frías y calientes en la nebulosa Carina.

Quilla o Carina, es una constelación del hemisferio sur situada entre las de la Vela, la Popa, el Pez Volador y el Camaleón. Junto con las dos primeras formaba la antigua constelación de Argos. La Vía Láctea atraviesa esta constelación, cuya estrella principal, Alpha Carinae o Canopus, es la más brillante del cielo después de Sirio.

También destaca en esta constelación la estrella Eta Carinae, una estrella variable que fue observada por Edmund Halley en 1677, cuando tenía magnitud 4. Hacia 1843 se hizo tan brillante como Canopus, pero desde 1900 su magnitud varía entre 6 y 8.

Alrededor de esta estrella se encuentra una nebulosa de dos grados de ancho y muy fácil de observar, incluso con prismáticos. La constelación también contiene varios cúmulos abiertos de estrellas, algunos de ellos bastante brillantes.

                         La Nebulosa del Cisne vista de otra manera


Esta perfecta tormenta de gas en la turbulenta Nebulosa del Cisne, M17, se encuentra en Sagitario, a 5.500 años-luz de la Tierra. Se trata de un burbujeante océano de hidrógeno candente con trazas de otros elementos, como oxígeno y azufre. Denominada también Nebulosa Omega, actúa como semillero de nuevos astros.

El torrente de radiación ultravioleta emitido por estrellas masivas esculpe e ilumina diseños ondulados en el gas. Estas estrellas de reciente formación están situadas fuera del campo de la imagen, arriba a la izquierda. El brillo de estas ondulaciones realza la estructura tridimensional del objeto. La radiación ultravioleta excava y calienta las superficies de las frías nubes de hidrógeno, que brillan así en rojo y naranja.

El intenso calor y presión generan un flujo de material desde estas superficies, creando una cortina verdosa de gas encendido que enmascara la estructura de fondo. La presión en los extremos de las ondas puede desencadenar una nueva formación estelar en su interior. Los colores representan los diversos gases, rojo para el azufre, verde el hidrógeno y azul para el oxígeno.

                                        La nebulosa Henize 3-1475

La nebulosa Henize 3-1475 está hacia la constelación de Sagitario a unos 18.000 años-luz. Su estrella central supera en 12.000 veces la luminosidad solar, y pesa entre 3 y 5 veces más. Con una velocidad de 4 millones de kilómetros por hora, sus jets son los más veloces nunca descubiertos. Resultan intrigantes también las estructuras en embudo que conectan los cúmulos de material más internos con la región nuclear. Los astrónomos la llaman “nebulosa Manguera de Jardín”.

Los jets son extensos flujos de gas que se desplazan velozmente, hallados cerca de muchos objetos del Universo, tales como estrellas jóvenes, nebulosas planetarias, o surgiendo desde agujeros negros y estrellas de neutrones. Su origen resulta incierto, pero parecen emanar desde pequeñas regiones donde ni siquiera el Hubble puede penetrar.

El material no fluye suavemente, sino a a intervalos de unos 100 años, creando aglomeraciones de gas que se alejan a altísimas velocidades. Se desconoce la razón de este flujo intermitente, aunque podría deberse a algún ciclo magnético de la estrella central (similar al ciclo solar de 22 años) o a la interacción con una estrella compañera.

La galaxia Andrómeda es una galaxia espiral, similar a la nuestra, aunque algo mayor. A una distancia de 2,2 millones de años luz, la galaxia Andrómeda es, al mismo tiempo, la galaxia espiral más cercana y el objeto más distante que se puede observar a simple vista. Antes de determinar su naturaleza por medio de poderosos telescopios, fue erróneamente considerada una nebulosa, o nube de materia interestelar. Por medio del telescopio se ve que junto a ella hay otras galaxias, de las cuales las más sobresalientes son dos pequeñas galaxias de forma elíptica.

                         Andrómeda M 31

Su forma y sus dimensiones la convierten en una versión ampliada de nuestra propia galaxia. Durante los últimos años, los científicos han descubierto que la Vía Láctea es una galaxia caníbal que se ha devorado – y seguirá devorándose – a otras galaxias más pequeñas. Y parece que Andrómeda, no se queda atrás: nuestra vecina se está tragando a sus dos pobres galaxias satélites. Es lógico, porque la gravedad manda en el universo y el canibalismo galáctico parece ser moneda corriente. De hecho, la atracción gravitatoria de la Vía Láctea y Andrómeda hace que ambas se estén acercando la una a la otra a considerable velocidad y, dentro de unos pocos miles de millones de años, se podrá celebrar el matrimonio que las convertirá en una sola y enorme galaxia.

La Vía Láctea, Andrómeda y las nubes de Magallanes forman parte de un grupo de 30 galaxias denominado “el grupo local” que abarca unos 10 millones de años luz. La mayoría de las galaxias del grupo local son de forma elíptica y contienen menos de una milésima del número de estrellas que tienen Andrómeda, la Vía Láctea o M33. De hecho, después de estas tres galaxias, las nubes de Magallanes resultan ser las mayores del grupo, que a su vez, es una parte exterior del Cúmulo Virgo, que comprende miles de galaxias.

File:Hoag's object.jpg

                                                              Objeto de Hoag

¿Es una galaxia o son dos? Esta pregunta surgió cuando el astrónomo Art Hoag en 1950 encontró este extraño objeto extragaláctico. La parte exterior del anillo está dominado por brillantes estrellas azules, mientras que cerca del centro yacen estrellas mucho más rojas y probablemente más viejas. Entre los dos está un espacio que aparece en casi completa oscuridad.

Cómo se formó el Objeto de Hoag es aún desconocido, aunque objetos similares se han identificado y han sido llamados colectivamente como galaxias en anillo. Las hipótesis de su origen incluyen una colisión de galaxias hace billones de años e interacciones gravitacionales envolviendo un inusual objeto con forma de núcleo.

Esta fotografía tomada por el Telescopio Espacial Hubble en Julio del 2001 revela detalles sin precedentes del Objecto de Hoag y podría dar vida a un mejor entendimiento. El Objeto de Hoag se expande a alrededor de 100.000 años luz y está situado a alrededor de 600 millones de años luz hacia la constelación de la Serpiente. Coincidentemente y visible en el espacio vacío hay otra galaxia en anillo, que probablemente se ubique a una distancia más lejana.

NGC 4603 se encuentra a 108 millones de años luz, en el cúmulo de galaxias de Centaurus, uno de los más masivos. Es la galaxia más lejana en la que se han podido estudiar las variaciones periódicas de brillo de estrellas cefeidas. Las cefeidas de mayor tamaño y brillo tienen periodos más largos que las pequeñas. Esta relación entre periodo y masa permite calcular con precisión su distancia.

                                                                                                                  NGC 4603

Aunque tienen un potente brillo, las Cefeidas son tenues y difíciles de encontrar a muy grandes distancias (las estrellas de la imagen de arriba, con su brillo “puntiagudo”, son objetos de fondo). Gracias a la aguda visión del Telescopio Espacial Hubble, se han identificado más de 36 señales cefeidas en NGC 4603, desde ahora la galaxia más distante en la que se hayan identificado estas estrellas. De hecho, utilizando este telescopio para seleccionar cefeidas en galaxias más cercanas que NGC 4603, el Equipo del Programa Fundamental Hubble ha anunciado recientemente el final de 8 años de esfuerzos para medir de manera precisa las distancias galácticas y la velocidad promedio de expansión del universo, la constante de Hubble.

Comparando las distancias galácticas y las velocidades de recesión , el equipo reporta que la constante de Hubble es igual a 70 kilómetros por segundo por megaparsec, con una incertidumbre de 10 porciento. Esto significa que una galaxia incrementa su velocidad de recesión aparente en 257,000 km/h por cada 3.3 millones de años-luz de recorrido. Cuando fue lanzado en 1990, una de las principales metas del Telescopio Espacial Hubble fue la medición exacta de la constante de Hubble.

                                               Galaxia del Sombrero

La Galaxia del Sombrero, Messier 104, es muy grande; visualmente es un quinto del tamaño de la Luna en un telescopio. Está a unos 30 millones de años-luz de la Tierra, en el cúmulo de Virgo. Se llama así porque su forma parece la de un sombrero de charro. Esta galaxia espiral, catalogada como galaxia NGC 4594, se ve de canto, y destaca en ella una banda oscura que parece dividirla longitudinalmente en dos, y que se encuentra formada por inmensas nubes oscuras. La masa de la galaxia del Sombrero duplica la de la nuestra. Si pudiéramos observar la nuestra de la misma manera, presentaría un aspecto similar a la del Sombrero.

¿Por qué la Galaxia del Sombrero se parece a un sombrero? Las razones incluyen el gran conglomerado de estrellas hacia la zona central de la galaxia y el prominente borde oscuro de polvo, que rodea la galaxia y que desde nuestra perspectiva, se observa de costado. Miles de millones de viejas estrellas causan el gran brillo central de M104, mientras una inspección más detallada del anillo, muestra intrincadas estructuras que los astrónomos no entienden todavía. El mismo centro de la galaxia del Sombrero radia en el espectro electromagnético y se piensa que aloja un agujero negro supermasivo.

Esta imagen fue hecha combinando 3 imágenes CCD, tomadas en, aproximadamente, los colores primarios; rojo, verde y azul, con lo cual fue posible crear una imagen con colores verdaderos. Cada imagen fue procesada por un detector de variaciones de sensibilidad para luego quitarle las regiones incorrectas causadas por defectos de fabricación y por la llegada de rayos cósmicos al telescopio.

                                                                           Galaxias de Las Antenas

Las colisiones entre galaxias pueden ser determinantes en la creación de nuevos planetas. El Observatorio de rayos X Chandra ha descubierto ricos depósitos de neón, magnesio y silicio en un par de galaxias en colisión llamadas Las Antenas. Los depósitos están localizados en enormes nubes de gas caliente. Cuando las nubes se enfríen, dicen los científicos, se debería formar una gran cantidad de estrellas y planetas. Estos resultados podrían augurar el destino de nuestra propia Vía Láctea y su futura colisión con la galaxia Andrómeda.

Cuando las galaxias colisionan, los choques directos entre estrellas son muy raros, pero las colisiones entre las enormes nubes de gas de las galaxias provocan un crecimiento en la tasa de natalidad estelar. Las estrellas masivas recién nacidas evolucionan rápidamente en unos pocos millones de años y explotan como supernovas. Los elementos pesados fabricados en estas estrellas son expulsados por las explosiones y enriquecen el gas que las rodea a lo largo de miles de años luz.

A una distancia de unos 60 millones de años, el sistema de Las Antenas es el ejemplo más cercano de una colisión entre dos grandes galaxias. La colisión, que empezó hace un par de cientos de millones de años, ha sido tan violenta que el gas y las estrellas de las galaxias han sido eyectados en dos largos arcos que le dan su nombre al sistema.

La galaxia NGC 6782 tiene una forma de espiral casi circular, sin embargo la foto dista mucho de mostrarnos una forma de círculo. Esta foto fue captada por el Telescopio Espacial Hubble el 1 de Noviembre del 2001 y logró ésta forma al exponer el telescopio a una visión en luz ultravioleta. Este tipo de luz es generada por estrellas mucho más calientes que nuestro Sol, de una zona de furiosa formación de estrellas.

Del disco azul surgen dos brazos en espiral que se recortan contra la luz dorada de estrellas más antiguas. Este impresionante y hermoso conjunto, es todavía un enigma para los astrónomos.

La apariencia de una galaxia puede depender fuertemente del color de la luz con la cual es observada. Esta imagen tomada por el Hubble de NGC 6782 ilustra un pronunciado ejemplo de este efecto. Esta galaxia espiral, cuando es vista por luz visible, muestra una separación en los brazos en espiral que le dan una forma de molinete similar a cualquier otra galaxia espiral. Sin embargo, cuando la galaxia es observada con luz ultravioleta por el Hubble, su forma es completamente diferente.

                                                                                                  la Galaxia NGC 3370

La galaxia NGC 3370 es muy parecida a nuestra Vía Láctea y está a unos 100 millones de años luz, en dirección de la constelación de Leo. Esta foto obtenida por el Telescopio Espacial Hubble permite ver muchos de sus detalles. Se han podido identificar algunas estrellas pulsantes individuales, llamadas Cefeidas, que pueden ser usadas para calcular la distancia a la NGC 3370. Esta galaxia espiral fue elegida debido a que en 1994 estalló una de sus estrellas como una supernova tipo Ia. Conociendo la distancia a la galaxia, se ha podido calibrar este tipo de supernova para determinar así distancias a otras supernovas similares ocurridas a distancias mucho mayores, revelando así el tamaño y la expansión del Universo.

Comparando las supernovas cercanas con las más distantes, podemos determinar que el Universo se encuentra acelerando su expansión y que contiene una misteriosa energía oscura. Pero, para medir el tamaño del Universo y su tasa de expansión, debemos calibrar el verdadero brillo de estas supernovas. De ahí su importancia, ya que se puede determinar su distancia gracias a la existencia de estrellas más tenues de brillo conocido en su vecindad y, con ello, calibrar las medidas en el Universo.

Las estrellas tenues que se usan como estándares de brillo son las estrellas variables conocidas como Cefeidas, cuyo brillo varía regularmente con un periodo que se encuentra directamente relacionado con su brillantez intrínseca. Ello permite conocer directamente la distancia de la galaxia NGC3370 y a la supernova SN1994ae mediante la observación de la variación de una o varias de estas estrellas en forma individual, algo que sólo se puede hacer con el Hubble. Las observaciones detectan varias Cefeidas e indican que se trata de las más distantes que se han observado.

El telescopio espacial Hubble captó imágenes de nuestra vecina Galaxia espiral cerrada NGC 1512, situada a 30 millones de años luz de la Tierra, utilizando rayos de luz de diferentes longitudes de onda. La galaxia está ubicada en la constelación Horologium y puede ser vista por telescopios comunes y corrientes debido a que está relativamente cercana. La NGC 512 tiene una extensión de 70.000 años luz, un tamaño parecido al de nuestra Vía Láctea. El Hubble utilizó un rango de rayos desde el infrarrojo hasta el ultravioleta para ver la galaxia por partes. El núcleo tiene un ancho de 2.400 años luz. Los astrónomos encontraron un anillo de estrellas enanas en el núcleo.

Los astrónomos que estudian el anillo circumnuclear de NGC 1512 están interesados particularmente en ver cómo se desarrollan los ciclos de formación estelar, a partir del material gaseoso que cae hacia el núcleo de la galaxia. El oscurecimiento de los cúmulos debido al polvo parece ser un fenómeno intermitente. Los cúmulos o están completamente ocultos, rodeados por sus nubes maternas, o casi completamente expuestos.

Es destacable la similitud que hay en las características de estos estallidos de formación estelar y los de otros que se han estudiando en detalle con el Hubble. Los anillos circumnucleares son comunes en las galaxias espirales barradas. Los astrofísicos creen que son estas barras las que sirven de despensa de material a los anillos.

Esta foto del Telescopio Espacial Hubble muestra en detalle una galaxia tardía, un pequeño sistema de estrellas y gas que parece aún encontrarse en pleno proceso de desarrollo, mientras la mayoría de sus congéneres comenzaron a formarse hace miles de millones de años. La evidencia de su extrema juventud se halla en la explosión de estrellas recién nacidas. Todo indica que esta galaxia, denominada POX 186, se originó cuando dos pequeños grumos de gas y estrellas colisionaron hace menos de 100 millones de años provocando la formación de nuevas estrellas.

Esta imagen del Hubble respalda las teorías de formación galáctica a partir del ensamblaje de pequeños bloques compuestos de gas y estrellas. Estos bloques se originaron poco tiempo después del Big-Bang, el acontecimiento creador del Universo. Sin embargo, se trata de un hallazgo sorprendente debido a su notable cercanía en el espacio ya que POX 186 se encuentra a sólo 68 millones de años-luz, hacia Virgo. Pertenece al grupo de galaxias conocido como enanas compactas azules debido a su reducida extensión y su colección de estrellas azules calientes. Su tamaño de 900 años-luz y unos 10 millones de estrellas, resultan insignificantes. La Vía Láctea mide unos 100.000 años-luz y alberga 100.000 millones de estrellas.

Este reciente sistema está situado en una región de espacio muy vacía, con sus vecinos galácticos más próximos a nada menos que 30 millones de años-luz. El encuentro gravitatorio entre los pequeños cúmulos de los que se formó, tuvo que demorarse más que si hubiera sucedido en regiones del espacio más densas. No obstante las estrellas más viejas que pueblan POX 186 rondan los mil millones de años. Se cree que las galaxias menos masivas del Universo han sido las últimas en formarse.

File:Rxj1242 comp.jpg

                                  Agujero Negro supermasivo


Cuando el gas y el polvo interestelares de una nebulosa se condensan, se forma una protoestrella que emite chorros de materia. Ésta continúa condensándose por gravitación al tiempo que se calienta. Cuando la temperatura del núcleo de la protoestrella llega a 10 millones de grados, se inician una serie de reacciones nucleares y nace una estrella nueva. Más adelante, la corteza del astro sufre una expansión acompañada de calentamiento, lo que da lugar a la formación de una gigante roja, de diámetro entre 10 y 100 veces el del Sol. Si la gigante roja es muy grande, produce hierro y otros elementos pesados, aumenta de tamaño y se transforma en supergigante. Después estalla y libera la materia en el espacio. Si sólo estalla la parte externa y el núcleo tiene suficiente masa, se convierte en un agujero negro.

Los agujeros negros pueden formarse durante el transcurso de la evolución estelar. Cuando el combustible nuclear se agota en el núcleo de una estrella, la presión asociada con el calor que produce ya no es suficiente para impedir la contracción del núcleo debida a su propia gravedad. A densidades mayores de un millón de veces la del agua, aparece una presión debida a la alta densidad de electrones, que detiene la contracción en una enana blanca. Si la densidad es mayor, se convierte en agujero negro.

¿Por qué los alrededores de algunos agujeros negros son más brillantes que otros? En el centro de las galaxias activas predominan los agujeros negros supermasivos de al menos miles de veces la masa del Sol. Muchos de ellos, denominados Seyfert Tipo I, son muy brillantes en el espectro de la luz visible. Otros, los Seyfert Tipo II son bastante débiles.

La diferencia podría estar provocada porque la acrección de algunos agujeros negros arrastra mucha más materia que otras. También podría deberse a que los agujeros negros que ocupan el centro de las galaxias Seyfert Tipo II estuvieran oscurecidos por un toroide alrededor de ellos.

Toroide en <a href=agujero negro" />

Para ayudarnos a decidir entre las dos hipótesis, se ha observado en rayos X la galaxia cercana NGC 4388, de tipo Seyfert II. Se ha descubierto que el flujo de rayos X en algunos colores (de rayos X) varía rápidamente, mientras que en otros es bastante estable.

El flujo constante y la absorción aparente de algunos colores de rayos X muy concretos por el hierro frío nos ofrecen evidencias de que estamos observando el agujero negro central de NGC 4388 a través de un toroide muy denso compuesto de gas molecular y polvo.

                       Choque entre Galaxias

Esta imagen del Telescopio Espacial Hubble releva los fuegos artificiales en el centro de una colisión entre dos galaxias. El Hubble ha descubierto más de mil racimos de estrellas jóvenes que estallan a la vida como resultado de este choque frontal.

Hay sucesos en el Universo que aún no sabemos explicar. ¿Cómo podrían dos estrellas jóvenes dotar de energía a estas nubes de gas interestelar? Ocultas tras estas gruesas nubes de polvo, las dos estrellas emiten iones y radiation de alta energía, que hacen que las nubes se fragmenten y resplandezcan.

Complejo binario

La imagen, tomada por la unidad Melipal del telescopio VLT, del Observatorio Europeo del Sur, resuelve con espléndido detalle el complejo BAT99-49 de esta nebulosa. La luz emitida por los átomos de helio se registra en azules, la del oxígeno en verdes y la del hidrógeno en rojos.

Una de las estrellas de este duo es del tipo enigmático Wolf-Rayet, mientras que la otra es una estrella O masiva. Esta pareja estelar y su nebulosa se encuentran en la Gran Nube de Magallanes, la más grande de las galaxias-satélite de nuestra Vía Láctea.

Las estrellas Wolf-Rayet constituyen uno de los objetos más calientes del universo, mientras que las O son las más energéticas y masivas de la secuencia principal de evolución estelar.

Aunque rodeada de lo que puede parecer como humo, el objeto conocido como “la estrella flameante” crea energía primariamente de la fusión nuclear, como otras estrellas.

El fuego, tipicamente definido como una adquisición molecular rápida del oxigeno, ocurre sólo cuando hay suficiente oxigeno presente y no es importante en entornos de alta energía y bajo oxigeno como el de las estrellas. El material que aparece como humo es practicamente hidrogeno interestelar, pero contiene filamentos oscuros como el humo de polvo rico en carbón.

Estrella Flameante

La región de AE Aurigae fué fotografiada por el KPNO un telescopio de 0.9 metros y se muestra en una fotografía en falsos pero representativos colores. La estrella AE Aurigae en sí es muy brillante, azul, jóven y conocida como la estrella fugitiva desde que parece haber sido expulsada de la región de la Nebulosa de Orión, hace unos 2.7 millones de años.

Imagen

En esta dramática región del sur de la Via Láctea en la constelación de Ara (el Altar) se pueden ver estrellas calientes azules, gas hidrógeno brillando en rojo, y nubes oscuras de polvo.

A unos 4000 años de la Tierra, las estrellas de la izquierda son jóvenes, masivas y muy energéticas. Su intensa radiación ultravioleta esta desgastando el complejo de nubes de la estrella cercana, ionizando el gas hidrógeno y produciendo un brillo rojizo de “hidrógeno alfa”.

A la derecha, visible en conjunto con la nebulosa de polvo oscura, está un pequeño cúmulo de estrellas en formación. Esta preciosa imagen en color es una composición de imagenes realizada con filtros en azul, verde e hidrógeno alfa.

Imagen pineada

La masa de un grupo de galaxias gigantes, CL0025 y 1654, situadas a unos 4.500 millones de años-luz, produce una lente gravitacional cósmica curvando la luz tal como predice la teoría de la relatividad de Einstein, de manera que forma imágenes detectables más distantes aún que las propias galaxias.

La masa total del grupo es la suma de las propias galaxias, vistas como materia ordinaria luminosa, más la materia oscura invisible del propio grupo, cuya naturaleza permanece desconocida. Analizando la distribución de la materia luminosa y las propiedades de las lentes gravitacionales debido a la masa total del grupo, los investigadores han resuelto el problema de localizar la distribución de la materia oscura.

El mapa resultante muestra la “materia oscura” invisible en azul y las posiciones de los grupos de galaxias en amarillo. El trabajo , basado en numerosas observaciones con el Telescopio Espacial Hubble, revela que la materia oscura del grupo no está uniformemente distribuida, pero sigue de cerca las acumulaciones de materia luminosa.

Con un núcleo oculto a la vista óptica por una gruesa senda de polvo, la galaxia elíptica gigante Centaurus A fue uno de los primeros objetos observados desde órbita por el Observatorio de rayos X Chandra.

Centaurus A: Rayos X de una Galaxia Activa

Los astrónomos no fueron decepcionados, pues la apariencia de Centaurus A en rayos X hace que su clasificación como una galaxia activa sea fácil de apreciar.

Tal vez la característica más destacable de esta imagen de rayos X en colores falsos de Chandra es el jet, de 30.000 años luz de longitud. Estallando hacia la esquina superior izquierda de esta imagen, el jet parece provenir de la brillante fuente central de rayos X de la galaxia, que se sospecha que alberga un agujero negro de alrededor de un millón de veces la masa del Sol.

Centaurus A también parece estar lleno de otras fuentes individuales de rayos X y un penetrante y difuso resplandor en rayos X. La mayoría de estas fuentes individuales probablemente son estrellas de neutrones o agujeros negros de unas pocas masas solares acretando material de las menos exóticas estrellas compañeras binarias. Este difuso resplandor de alta energía representa gas en toda la galaxia calentado a temperaturas de millones de grados C.

File:ESO Centaurus A LABOCA.jpg

A una distancia de 11 millones de años luz hacia la constelación de Centauro, Centaurus A (NGC 5128) es la galaxia activa más cercana.

[mac1] incluir,topgal.htm,1

¿Qué creó esta gigante burbuja espacial? Lo hizo una estrella masiva que no solamente es brillante y azul sino que también emite viento estelar de gas ionizado. La nebulosa Burbuja es ahora la más pequeña de las tres burbujas que rodean a la estrella masiva BD+602522 y es parte de del circuito de burbuja gigante S162 creada con la ayuda de otras estrellas masivas. Como el gas abandona tan rápidamente BD+602522 empuja y esparce el gas hacia la coraza. La luz energética ioniza la coraza haciendo que ésta brille. Esta fotografía tomada por el Telescopio Espacial Hubble y dada a conocer durante la semana pasada muestra muchos detalles de la nebulosa Burbuja nunca antes vistos y aún no entendidos. La nebulosa también es conocida como NGC 7635 , se extiende 6 años luz y es visible por pequeños telescopios hacia la constelación de Casiopea.

La nebulosa planetaria Araña roja muestra la compleja estructura que se puede formar cuando una estrella normal expulsa su gas exterior y se convierte en una estrella del tipo enana blanca.

Llamada oficialmente NGC6537, esta nebulosa planetaria de dos lóbulos simétricos contiene la enana blanca más caliente que se ha obsevado, probablemente formaba parte de un sistema binario.

Los vientos internos que emanan de las estrellas centrales, visibles en el centro, tienen una velocidad de más de 1000 kilómetros por segundo. Estos vientos expanden la nebulosa, que fluye por las capas de la nebulosa, formando ondas de gas caliente y polvo a su paso. Los átomos capturados en estas colisiones emiten la luz mostrada en esta fotografía en colores reales.

La nebulosa Araña roja está situada en la constelación de Sagitario. Su distancia no se conoce con precisión pero se estima en unos 4000 años luz.

Una de las mayores esferas de nuestra Galaxia proporciona valiosas pistas sobre la composición química de las estrellas por su propia forma. La nebulosa planetaria Abell 39, en la actualidad de seis años luz de ancho, fue una vez la atmósfera exterior de una estrella del tipo del Sol expulsada hace miles de años.

La naturaleza esférica casi perfecta de Abell 39 permite a los astrónomos estimar con precisión cuanto material relativo está absorbiendo y emitiendo luz actualmente. Las observaxiones indican que Abell 39 contiene sólo alrededor de la mitad del oxígeno encontrado en el Sol, una confirmación intrigante pero no sorprendente de las diferencias químicas entre las estrellas.

La razón por la cual la estrella central está ligeramente desplazada del centro 0,1 años luz, es desconocida hasta la fecha. Abell 39 está aproximadamente a 7.000 años luz de distancia, aunque se pueden ver a través y alrededor de la nebulosa varias galaxias a millones de años luz de distancia.

Joyero de Estrellas

                                                              Joyero de Estrellas

La gran variedad de colores de las estrellas en este cúmulo abierto es la base de su nombre: El Joyero. Una de las brillantes estrellas centrales es una supergigante roja, en contraste con las estrellas azules que la rodean. El cúmulo, también conocido como Kappa Crucis contiene sobre 100 estrellas.

Los cúmulos abiertos son más jóvenes, tienen menos estrellas, y tienen mayor relación de estrellas azules que los cúmulos globulares. El Joyero está a una distancia cercana a los 7500 años luz, de forma que la luz que vemos hoy en día fue emitida desde el cúmulo incluso antes de que las grandes pirámides en Egipto fueran construídas.

El Joyero, fotografiado arriba, cuyo tamaño aproximado es de 20 años luz, puede ser visto con binoculares hacia la constelación de la Cruz del Sur.

El brillante gas de hidrógeno es el protagonista de esta maravillosa vista en detalle de la estrella variable S Mon en la débil pero preciosa constelación de Monoceros, el Unicornio.

NGC 2264: Estrellas, Polvo y Gas

En esta región de formación de estrellas (NGC 2264), la compleja unión de gás y nubes de polvo está a unos 2.700 años luz y se mezcla con la rojiza emisión nebular excitada por la luz energética de estrellas nuevas y la oscura capa de nubes de polvo. Las nubes de polvo oscuras cercana a la estrella reflejan la luz de ésta, formando una azulada nebulosa de reflexión.

Esta imagen recoge unos 1.5 grados (o cerca de 3 lunas llenas) cubriendo una distancia de 70 años luz de la NGC 2264. En la foto podemos ver la Nebulosa del Cono (izquierda), la nebulosa de piel de Zorra, que se encuentra justo debajo de S Mon, y el cúmulo de estrellas Arbol de Navidad. Este último en forma de triángulo aparece con el vértice en la Nebulosa del Cono, y su base centrado en S Mon.

No hay nada parecido en nuestra propia galaxia. Aquí no existen cúmulos globulares tan jóvenes como NGC 1850.

Se pueden seguir encontrando cúmulos globulares de tan sólo 40 millones de años de antigüedad en la vecina galaxia LMC, pero quizá ninguno tan inusual como NGC 1850. Una inspección detallada de la fotografía revela dos cúmulos. Abajo, a la derecha del grupo principal de estrellas conocido como NGC 1850 A, hay un grupo más pequeño y aún más joven denominado NGC 1850B. Este cúmulo está formado por estrellas de apenas cuatro millones de años.

La gran nube roja de gas que rodea los cúmulos, puede haber sido creada, en su mayor parte, por explosiones de supernovas de estrellas ubicadas en el cúmulo más joven. En la parte superior izquierda se puede ver el remanente de supernova rojo N57D.

Esta galaxia antes parecía ser muy similar a nuestra galaxia La Vía Láctea, una galaxia espiral vista casi de canto. Sin embargo, recientes imágenes en alta resolución del polvo de NGC 891 muestran inusuales patrones filamentarios extendiéndose lejos de su disco galáctico.

Este polvo interestelar posiblemente fue expulsado del disco galáctico hacia el halo por explosiones estelares de supernovas. Como el polvo es tan frágil, su apariencia después de sobrevivir a la expulsión del disco puede ser muy contundente. De nuevo, los fenómenos descubiertos, no obstante, a veces parecen tan complejos que surgen más preguntas de las que son respondidas.

Galaxia del Grupo Local NGC 6822

                                                        Galaxia del Grupo Local

La galaxia cercana NGC 6822 es irregular en muchas formas. Primero, la distribución de estrellas de la galaxia merece la clasificación formal de enana irregular, y desde nuestro punto de vista la pequeña galaxia parece prácticamente rectangular.

Lo que pareció más peculiar a los astrónomos, sin embargo, es la inusualmente alta abundancia de regiones HII de NGC 6822, areas de hidrógeno ionizado que rodean a las estrellas jóvenes. Grandes regiones HII, también conocidas como nebulosas de emisión , son visibles rodeando a la pequeña galaxia, particularmente hacia la parte superior derecha. En la parte inferior izquierda hay estrellas brillantes que están holgadamente agrupadas en un brazo.

Ilustrada en esta fotografía, NGC 6822, también conocida como la Galaxia de Barnard, está ubicada a sólo 1,5 millones de años luz de la Tierra y por lo tanto es un miembro de nuestro Grupo Local de Galaxias. Esta galaxia, hogar de famosas nebulosas incluyendo a Hubble V, es visible con un pequeño telescopio hacia la constelación de Sagitario.

La Nebulosa del Capullo, catalogada como IC 5146, es una nebulosa de gran belleza situada a unos 4.000 años luz de distancia, en la constelación del Cisne. Dentro de la nebulosa hay un nuevo cúmulo abierto de estrellas en pleno desarrollo. Al igual que otras guarderías estelares, la nebulosa del Capullo es, al mismo tiempo, una nebulosa de emisión, de reflexión y de absorción. Algunas especulaciones basadas en medidas recientes sostienen que la estrella masiva en el centro de la fotografía abrió un agujero en la nube molecular existente, a través del cual fluye gran parte del material que resplandece.

La misma estrella, formada hace unos 100.000 años, proporciona ahora la fuente de energía para la mayoría de la luz emitida y reflejada de esta nebulosa.

La nebulosa que rodea a la brillante estrella S Mon está llena de polvo oscuro y de gas incandescente. Las formas extrañas que rodean a esta estrella se originan de fino polvo que reacciona con luz energética y gas caliente expulsados por las jóvenes estrellas.

La región que se encuentra justo debajo de S Mon, la brillante estrella de esta fotografía, es llamada la Nebulosa Pelo de Zorro por su color y textura. El azul que resplandece rodeando a S Mon resulta de la reflexión, donde el polvo vecino refleja la luz de la brillante estrella. El resplandor rojo más difuso resulta de la emisión, donde la luz estelar ioniza el gas hidrógeno. Áreas rosadas están iluminadas por una combinación de los dos procesos. S Mon es parte de un joven cúmulo abierto de estrellas llamado NGC 2264, localizado a 2500 años luz de distancia hacia la constelación de Monoceros, justo al norte de la Nebulosa del Cono.

Parece ser que las estrellas y los planetas están en obras en la polvorienta nebulosa RCW 49 (abajo). Esta imagen infrarroja en color falso del Telescopio Espacial Spitzer nos muestra cómo las estrellas calientes conocidas están consiguiendo despejar la zona central de la nebulosa, que es una auténtica guardería estelar.

Este hueco nos descubre unas 300 estrellas recién nacidas, que vemos aquí a través de las nubes y filamentos de polvo cósmico. Los datos de infrarrojo indican que es probable la presencia de discos protoplanetarios alrededor de algunas de las estrellas jóvenes, y estarían entre los discos de formación planetaria más débiles y lejanos que se han logrado observar.

Estos interesantes resultados respaldan la idea de que los discos de formación planetaria forman parte de la evolución natural de una estrella. La ajetreada RCW 49 mide unos 350 años luz, y se encuentra a sólo 14.000 años luz de distancia, en la constelación de Centauro.

La variedad espectacular en los colores de las nubes de Rho Ophiuchi, mostrada en esta imagen, refleja los procesos que se llevan a cabo en su interior. Las nubes azules brillan por efecto de la luz que reflejan. La luz azul de las estrellas Rho Ophiuchi y sus vecinas se refleja de manera más eficiente, en esta porción de la nebulosa, que la luz roja. Por la misma razón, en la Tierra el cielo diurno parece azul.

Las regiones roja y amarilla deben su brillo a la emisión del gas atómico y molecular de la nebulosa. La luz de las estrellas cercanas, particularmente la de la supergigante Antares, excita los electrones del gas que, al recombinarse, emiten luz.

Las regiones oscuras se deben a los granos de polvo, formados en las atmósferas de las estrellas jóvenes, que bloquean la luz emitida detrás.

En esta fotografía las nubes estelares de Rho Ophiuchi se ven junto al cúmulo globular M4 y son mucho más coloridas de lo que los humanos podemos ver. Las nubes emiten luz en todo el espectro, desde las ondas de radio hasta los rayos gamma.

El borde de la galaxia azul ilustrada a la derecha es una inmensa estructura parecida a un anillo de 150.000 años luz de diámetro compuesta de estrellas masivas recién formadas extremadamente brillantes.

Esa galaxia, AM 0644-741, es conocida como una galaxia en anillo y la creó una gigantesca colisión galáctica. Cuando las galaxias chocan pasan una a través de la otra; sus estrellas individuales difícilmente entran en contacto.

La forma de anillo es el resultado de la disrupción gravitacional provocada por una pequeña galaxia intrusa pasando entera a través de una mayor. Cuando esto acontece, el gas y el polvo interestelar se condensan, causando que una onda de formación de estrellas se aparte del punto de impacto igual que una onda en la superficie de un estanque cuando se tira una piedra.

La galaxia intrusa ya se ha movido fuera del cuadro tomado por el Telescopio Espacial Hubble, imagen que fue publicasa para conmemorar el décimo cuarto aniversario del lanzamiento del Hubble. La galaxia en anillo AM 0644-741 se encuentra a unos 300 millones de años luz de distancia.

Todo lo que existe: ¡El Universo! La materia y el espaciotiempo que la contiene, conforma todos los objetos que podemos ver y detectar, y, según parece, puede haber más, mucho más, que, para nosotros, es invisible, está “perdido” pero que, según se cree, puede suponer más del 90% de lo que el Universo es, y, lo que vemos, es sólo el 4%.

¡Qué grande es el Univero! Para nosotros, podríamos decir que infinito, ya que, pensar en que algún día, pudiéramos recorrerlo, más que un sueño, sería un pensamiento ilusorio.

La Tierra es el tercer planeta del Sistema Solar, considerando su distancia al Sol, y el quinto de ellos según su tamaño. Está situada aproximadamente a unos 150 millones de kilómetros del Sol. Es el único planeta del universo que se conoce en el que exista y se origine la vida.  Esperémos que en tan inmenso y complejo Cosmos, la vida sea la consecuencia de la evolución de la materia en las estrellas y en los mundos.

Que hayáis disfrutado con el recorrido.

emilio silvera

¿Cuerdas Cósmicas? Podría ser.

                               Podrían estar por todas partes y formar parte de todo

Aunque no todas si son muchas las Grandes Teorías Unificadas y teorías de supersimetría las que predicen la formación de cuerdas en la congelación del segundo 10-35 despues del comienzo del tiempo, cuando la fuerza fuerte se congeló y el universo se infló. Las cuerdas se deben considerar como un subproducto del proceso mismo de congelación. Es cierto que aunque las diversas teorías no predicen cuerdas idénticas, sí predicen cuerdas con las mismas propiedades generales. En primer lugar las cuerdas son extremadamente masivas y también extremadamente delgadas; la anchura de una cuerda es mucho menor que la anchura de un protón1. Las cuerdas no llevan carga eléctrica, así que no interaccionan con la radiación como las partículas ordinarias. Aparecen en todas las formas; largas lineas ondulantes, lazos vibrantes, espirales tridimensionales, etc. Sí, con esas propiedades podrían un candidato perfecto para la “materia oscura”. Ejercen una atracción gravitatoria, pero no pueden ser rotas por la presión de la radiación en los inicios del Universo.

El espesor estimado de una cuerda es de 10-30 centímetros, comparados con los 10-13 de un protón. Además de ser la más larga, y posiblemente la más vieja estructura del universo conocido, una cuerda cósmica sería también la más delgada: su diámetro sería 100.000.000.000.000.000 veces más pequeño que el de un protón.. Y cada cuerda sería terriblemente inquieta, algo así como un látigo agitándose por el espacio casi a la velocidad de la luz. Las curvas vibrarían como enloquecidas bandas de goma, emitiendo una corriente continua de ondas gravitacionales: rizos en la misma tela del espacio-tiempo. ¿Qué pasaría si una cuerda cósmica tropezara con un planeta? Al ser tan delgada, podría traspasarlo sin tropezar con un solo núcleo atómico. Pero de todos modos, su intenso campo gravitatorio causaría el caos.

http://stringers.es/wp-content/uploads/2010/06/cosmic.jpg

Simulación del efecto de lente generado por una cuerda cósmica. Crédito: PhysicsWorld.com

Por tanto, cuando observásemos un objeto con una cuerda cósmica en la trayectoria de nuestra mirada, deberíamos ver este objeto dos veces, con una separación entre ambas imágenes del orden del defecto de ángulo del cono generado por la curvatura del espaciotiempo. Esta doble imagen sería característica de la presencia de una cuerda cósmica, pues otros cuerpos, como estrellas o agujeros negros, curvan el espaciotiempo de manera distinta, generando al menos cuatro imágenes deformadas. Por tanto, una observación de este fenómeno no podría dar lugar a un falso positivo.

En este sentido, el nombre de cuerda cósmica está justificado debido a que son impresionantemente pesadas, pasando a ser objetos macroscópicos aun cuando su efecto es pequeño. Una cuerda de seis kilómetros de longitud cuya separación entre ambas geodésicas es de apenas 4 segundos de arco tendría ¡la masa de la Tierra!. Evidentemente, cuerdas de este calibre no se espera que existan en la naturaleza, por lo que los defectos de ángulo esperados son aún menores y, por tanto, muy difíciles de medir.

Y esta es una de las razones de que todavía no se haya encontrado ninguna cuerda de este tipo. Si bien en los últimos años han surgido muchas imágenes candidatas a estar formadas por un efecto de lente de este tipo, la mayoría han resultado ser dos cuerpos distintos pero muy similares entre sí. Pese a ello, los astrofísicos y los teóricos de cuerdas no puerden la esperanza de encontrar en los próximos años, y gracias a telescopios cada vez más potentes, como el GTC; evidencias directas de la existencia de este tipo de cuerdas; evidencias que no sólo nos indicarían que las teorías de cuerdas van por buen camino, si no que el modelo del Big Bang es un modelo acertado.

http://stringers.es/wp-content/uploads/2010/06/gravity-lens-esquema.jpg

                                               Esquema del trazado de rayos para el efecto de lente gravitatoria de una cuerda cósmica

Las cuerdas cósmicas, desde el momento de su formación en el segundo 10-35,  constituyen un entorno masivo, apelmazado, contra el que se desarrolla la evolución de las partículas, núcleos y átomos. Como no son afectadas por la presión de la radiación,como el plasma, pueden servir como núcleos de condensación -las semillas- para la formación de galaxias, cúmulos galácticos y supercúmulos, siempre que puedan sobrevivir lo necesario para hacerlo.

Neil Turok, titular de la cátedra de Física Matemática en el Departamento de Matemáticas Aplicadas y Física Teórica de la Universidad de Cambridge. Es coautor, con Paul Steinhardt, de Universo Infinito: Más allá del Big Bang. El principal portavoz de la idea de las cuerda cósmica es Niel Turok, un joven físico teórico que trabaja en el Imperial College de Londres y pasa muicho tiempo en EE UU haciendo un periplo por diversas Universidades. Ha hecho del desciframiento de la conducta de las cuerdas cósmicas  el trabajo de su vida (al menos por el momento) y, se aplica en las complejas ecuaciones de la teoría de campos cuánticos que describen dichas cuerdas. Su enfoque es admirable por su integridad:

En lugar de seguir el camino normal desarrollando la conducta de las cuerdas y dejando a otros hallar el efecto que las cuerdas tienen sobre el problema de las galaxias, Turok y los jovenes que le rodean han decidido aprender cosmología. Dicha decisión no es frecuenta y por inusual, ha llamado la atención que se quieran especializar de manera específica en otro campo distinto al suyo para poder hacer y comprender mejor su trabajo. Y, otra curiosidad es que, el más duro crítico de las cuerdas cósmicas, P.J.E. Peebles, de Princeton, haya estado actuando como su tutor, lo cual, es tan significativo que se podría valorar como uno de los gestos más desinteresados y de alta calidad que en la Física se pueda haber producido.

 

Una de las virtudes de esta teoría es que puede “verse” por la observación. Aunque las cuerdas en sí son invisibles, sus efectos no tienen por qué serlo. La idea de las supercuerdas nació de la física de partículas, más que en el campo de la cosmología (a pesar del nombre, la cuerdas cósmicas no tienen nada que ver con la teoría de las “supercuerdas”, que mantiene que las partículas elementales tienen forma de cuerda). Surgió en la década de los sesenta cuando los físicos comenzaron a entrelazar las tres fuerzas no gravitacionales – electromagnetismo y fuerzas nucleares fuertes y débiles – en una teoría unificada.

En 1976, el concepto de las cuerdas se había hecho un poco más tangible, gracias a Tom Kibble. Kibble estudiaba las consecuencias cosmológicas de las grande teorías unificadas. Estaba particularmente interesado en las condiciones del 10^-35 segundo después del Big Bang, cuando las temperaturas en el cosmos embrionario bajaron más de billones de billones de grados. Ese fue el momento en que las fuerzas y las partículas se diferenciaron unas de otras.

                                                    El misterioso “universo” de los campos cuánticos que nadie sabe lo que puede esconde

A los cosmólogos les gusta visualizar esta revolucionaria transición como una especie de “cristalización”: el espacio, en un principio saturado de energía, cambió a la forma más vacía y más fría que rodea actualmente nuestro planeta. Pero la cristalización fue, probablemente, imperfecta. En el cosmos recién nacido podría haberse estropeado con defectos y grietas, a medida que se enfriaba rápidamente y se hinchaba.

Otras cuerdas están en La Teoría M de E. Witten que nos explica muy bien las implicaciones de las cuerdas en el contexto del Universo, y, ademas, lleva implícita la Gravedad Cuántica que tantos físicos buscan desde hace mucho tiempo para explicar cuestiones que hasta el momento carecen de ella. Sin embargo, estas son otras cuerdas que, implicadas en las profundidades de la materia, nos podría explicar otras muchas cosas a diferente nivel de lo que la cuerda cósmica pretende explicar.

Turok nos dice:

“Durante los últimos diez años he estado trabajando principalmente en la cuestión de cómo empezó el universo – o no comenzar. ¿Qué sucedió en el Big Bang? Para mí, esto parece ser una de las cuestiones más fundamentales de la ciencia, porque todo lo que sabemos, según todos los indicios, debe de haber salido de la Gran Explosión. Ya se trate de partículas o los planetas o las estrellas o, en última instancia, incluso la vida misma.”

En los últimos años, la búsqueda de las leyes fundamentales de la Naturaleza nos ha obligado a pensar en el Big Bang, mucho más profundamente. De acuerdo con nuestras más modernas y mejores teorías – la teoría de cuerdas y la teoría M – todos los detalles de las leyes de la física son en realidad determinada por la estructura del universo, en concreto, por la disposición de pequeñas enrollada dimensiones extra del espacio. Este es un cuadro muy hermoso: la física de partículas en sí es ahora más que otro aspecto de la cosmología. Pero si se quiere entender por qué las dimensiones extra están dispuestas como están, hay que entender el Big Bang porque ahí es de donde todo proviene.

De alguna manera, hasta hace muy poco, la física fundamental se había llevado bien sin realmente hacer frente a un gran problema que no dejaba juntarse a las dos teorías más influyentes e importantes que tenemos: La mecánica cuántica y la relatvidad. Los infinitos surgían y aquello era un sinsentido descomunal que nos hablaba de la incompatibilidad existente entre los muy pequeño y lo muy grande.

Sin embargo, en todo esto existe un sinsentido que debemos desvelar. ¿Si todo lo grande está hecho de cosas pequeñas, cómo pueden ser incompatibles? En la Teoría de Cuerdas no resultan así, y, la mecánica cuántica y la relatividad conviven en paz sin que aparezcan los indeseados infinitos. Es decir, en la Teoría de Cuerdas, subyace de manera automática, una teoría de la Gravedad Cuántica.

El mismo Einstein no interpretó todo esto como el principio de los tiempos y llegó a decir, bueno, mi teoría falla. La mayoría de las teorías fallan en algún régimen, y entonces ustedes necesita una teoría mejor, más moderno y adelantada. La teoría de Isaac Newton no falla cuando las partículas se muevan muy rápidas, sino que no logra describir eso y necesitó la relatividad. Del mismo modo, Einstein dijo:”… necesitamos una mejor teoría de la gravedad que la mía.”

 

Pero en la década de 1960, cuando la evidencia observacional para el Big Bang se hizo muy fuerte, los físicos de alguna manera llegaron a la conclusión de que todo lo que no sabemos debió gestarse al principio del tiempo, más allá del tiempo de Planck, esa fracción de segundo inaccesible. No estoy seguro de por qué llegaron a tal conclusión, pero tal vez se debió a Fred Hoyle –el principal impulsor de la teoría rival del Big Bang, la del estado estacionariorival– que parece haber ridiculizado con éxito la teoría del Big Bang, diciendo que no tenía sentido porque implicaba un principio de los tiempos y que sonaba absurdo.

A continuación, el Big Bang (parece que) fue confirmado por la observación, al menos todos lo dieron por bueno y, a partir de aquel momento, ese es, el Principio de Todo por el que nos estamos guiando: Allí comenzó el Tiempo y el Espacio y fue el inicio de la creación de todo lo que existe. Todo lo que vemos a nuestro alrededor se basa por completo en ese primer momento que llamamos Big Bang, y sin embargo,  ese primer momento inicial (¡qué casualidad!), es el que nadie ha podido nunca describir.

         Alrededor de las cuerdas cósmicas se crearon las grandes estructuras

Para algunos, no parece que pueda caber la menor duda en el sentido de que, fueron las cuerdas cósmicas las que posibilitaron que se puedieran formar las grandes estructuras del universo surviendo de semilla o núcleo sobre el que se fueron adhiriendo inmensas porciones de materia que conformarían el objeto final. Es posible que las cuerdas cósmicas nos den una visión particularmente atractiva del universo y nos hace pensar en que, en el núcleo de cada galaxia hay una cuerda cósmica que, como el esqueleto de nuestros cuerpos, es la que la mantiene firme tal como la podemos contemplar y hace posible su existencia. Sin embargo, la teoría nos dice que las cuerdas cósmicas (como todo en el universo), tienen un tiempo de vida que una vez cumplido, desaparecen.

  Poco a poco se va diluyendo en energía, se vuelve transparente y desaparece

Está claro que la cuerda cósmica tal y como la presenta la teoría, es todo energía. Cuando comienza a despedir ondas gravitatorias, el proceso sigue hasta que la cuerda se ha radiado a si misma simplemente fuera de la existencia. Cuando su energía se agota, no queda nada. Por tanto sería posible utilizar las proporciones de pérdida de energía que predice la teoría de la relatividad general para calcular cuanto tiempo durará la energía almacenada en cualquier cuerda cósmica.

De hecho hubo un período de nervios cuando en cierto tiempo pareció que la cuerda cósmica tendrían una vida demasiado corta para poder realizar su trabajo de formar las galaxias, que romperían los anillos y se radiarian así misma fuera de la existencia antes que la materia y la radiación y la materia ordinaria se desparejaran. Sin embargo, los nuevos cálculos parecen mostrar ahora que los anillos capaces de formar las semillas de las galaxias durarían lo suficiente para llevar a cabo su función.

Claro que estas teorías de cuerdas, como tantas otras antes que ella, también han desarrollado una gran avalancha de excepticismo que es mostrado por algunos en esos momentos de la última cerveza en charlas distendidas entre compañeros físicos y cosmólogos que están unidos por esa curiocidad por saber si, en realidad, esas cuerdas han existido alguna vez. Y, esos excepticos, en verdad, no eran más duros en las críticas a las teorías de los demás que con las suyas propias. El el fondo, todos los buenos físicos saben… ¡que no saben! Lo suficiente como para poder emitir juicios certeros sobre eso ni sobre nada.Lo que hoy es… mañana no será.

Pero claro, nunca se debe decir que no. Hay maneras de comprobar las evidencias, al menos dos. Una, la llamada lente gravitatoria, se apoya en los efectos que las cuerdas cósmicas tendrían sobre la luz de las galaxias distantes. El otro método, algo más indirecto, implica la búsqueda de ondas gravitatorias despedidas por las cuerdas al comienzo de la vida del Universo.

La lente gravitacional es el efecto en el que los rayos de luz son doblados por el campo gravitacional de un objeto masivo (en este caso serían las cuerdas cósmicas las responsables), también las galaxias y los agujeros negros producen el efecto de Lente gravitacional que es una propiedad de todos los objetos masivos.

Las ondas gravitatorias están siendo buscadas por varios programas y proyectos construídos para tal fin, como LIGO y otros, y, hasta el momento, no parece que se haya tenido muchos resultados a pesar de que, la teoría nos dice que las cuerdas cósmicas emitían una gran cantidad de radiación gravitatoria en los primeros días del Universo. Sin embargo, sí se ha localizado la radiación cósmica del fondeo de microondas y las ondas gravitacionales no.

Está claro que la idea de la cuerda cósmica es sugestiva y nos podría explicar (por fín) como se pudieron formar las galaxias. La gran masa de la cuerda apunta a que debieron ser creadas muy pronro en la vida del Universo, probablemente mucho antes que la materia ordinaria cuando las temperaturas eran muy altas y había disponible mucha energía para formar objetos exóticos.

Si en verdad estuvieron allí, no lo podemos saber a ciencia cierta, y, se trabaja en la búsqueda de pruebas irrefutables que nos confirmen su presencia y su trabajo y contibución en la formación de las grandes estructuras del Universo.

Las grandes estructuras de nuestro Universo se pudieron haber formado a partir de unas semillas (cuerdas cósmicas) de gran densidad que atraían a la materia ordinaria para formarlas, y, de esa manera, pudieron haberse formado las galaxias y estrellas del cielo. De momento, ninguna explicación mejor que esa nos puede aclarar esa incognita que persiste desde siempre y que, en no pocas ocasiones, produce verguenza a los cosmólogos que, en realidad, no saben qué contestar a una simple pregunta:

¿Cómo se formaron las galaxias?

emilio silvera

Los secretos del Universo

“Otra fuente de explosión gamma sin identificar observada por debajo del plano galáctico, está probablemente más allá de los límites de la Vía Láctea, su naturaleza continúa siendo un misterio.”

Queda expresada nuestra enorme ignorancia sobre los muchos secretos que el Universo nos esconde, y, sin embargo, también ha quedado claro que, cada día, desvelamos algunos de esos innumerables secretos como lo demuestran el sin fin de misiones de todo tipo que en los últimos 10 años han sido puestas en marcha hacia el espacio para saber lo que en él ocurre. El Fermi es otro proyecto que se sumará a esos otros muchos que nos facilitan datos e información valiosa para desentrañar esos misterios y tener respuestas a muchas preguntas que no han podido ser contestadas.

Fermi  nos revela imágenes de las primeras observaciones y el telescopio espacial nos dirá dónde están las fuentes de rayos gamma. El telescopio más nuevo de la NASA, anteriormente conocido como GLAST, una vez que pasó exitosamente su verificación orbital, comenzó una misión destinada a explorar el violento e impredecible universo de los rayos gamma.

El telescopio comenzó la misión con un nuevo nombre. La NASA decidió que a GLAST se le asignara un nuevo nombre: Telescopio Espacial de Rayos Gamma Fermi, en honor al profesor Enrico Fermi (1901 – 1954), un pionero en el campo de la física de alta energía.

Enrico Fermi fue la primera persona que sugirió la forma en la cual las partículas cósmicas podrían ser aceleradas a grandes velocidades. Su teoría proporciona los fundamentos para entender el nuevo fenómeno que su telescopio homónimo descubrirá.

Los científicos esperan que Fermi, mediante la observación de rayos gamma energéticos, descubra muchos nuevos pulsares, revele el funcionamiento de los agujeros negros súper masivos y ayude a los físicos a buscar nuevas leyes de la naturaleza.

Durante dos meses después del despegue de la nave espacial, el 11 de junio de 2008, los científicos pusieron a prueba y calibraron sus dos instrumentos, el Telescopio de Gran Área (LAT) -por su sigla en idioma inglés- y el Monitor de Destellos del GLAST (GBM), por el mismo motivo.

Como hemos podido saber, el equipo del Telescopio Espacial de Gran Área nos mostrará una imagen del cielo donde se aprecia el gas brillante de la Vía Láctea, pulsares parpadeantes y una brillante galaxia ubicada a miles de millones de años luz. El mapa combina 95 horas de las primeras observaciones llevadas a cabo por el instrumento:

Se tardó varios años para crear una imagen similar, producida por el ahora desaparecido Observatorio de Rayos Gamma Compton. Con la sensibilidad superior de Fermi, seguramente surgirán nuevos descubrimientos.

El Telescopio Espacial de Gran Área de Fermi explora el cielo completo cada tres horas cuando funciona bajo el “modo de reconocimiento”, tarea que ocupará la mayor parte del tiempo de observación del telescopio durante su primer año de operaciones. Estas fotografías instantáneas permiten a los científicos monitorear cambios rápidos en las características del violento universo de rayos gamma. El telescopio es sensible a los fotones con energías que varían en un rango de 20 MeV (Megaelectronvoltios) hasta por encima de 300 GeV (Gigaelectronvoltios). El límite más alto de este rango, el cual corresponde a energías que son 5 millones de veces más grandes que los rayos X dentales, está muy poco explorado.

Justo cuando crees que sabes todo acerca de una galaxia, algo nuevo aparece. O algo viejo, recién descubierto. El Telescopio Espacial Fermi de rayos gamma, que ha estado barriendo todo el cielo cada tres horas durante los últimos dos años y un trimestre desde su lanzamiento, ofrece la mejor vista de la emisión de rayos gamma desde el espacio de un observatorio de rayos gamma aún en marcha. Un nuevo análisis cuidadoso de los datos obtenidos por el Telescopio de Gran Area (LAT) de Fermi ha puesto de manifiesto una cosa sorprendente: dos burbujas bastante simétricas de la emisión de rayos gamma alrededor del centro de nuestra galaxia, la Vía Láctea.

                                                                               Erupciones de rayos gamma con origen en agujeros negros

El instrumento secundario de la nave espacial, el GBM, identificó 31 explosiones conocidas como erupciones de rayos gamma solamente durante su primer mes de operaciones. Estas explosiones de alta energía ocurren cuando las estrellas masivas mueren o cuando las estrellas de neutrones que están orbitando se mueven juntas en forma de espiral y se fusionan.

El GBM es sensible a rayos gamma menos energéticos que el Telescopio Espacial de Gran Área, lo cual ofrece una visión complementaria del extenso espectro de rayos gamma. Trabajando juntos, los dos instrumentos pueden finalmente desentrañar algunas de las muchas fuentes de rayos Gamma que exisdten en nuestro Universo.

Una potencia excepcional difícil de explicar.

Después de la alerta, varios instrumentos terrestres apuntaron a este objeto, entre ellos se encuentra el VLT (Telescopio Muy Grande) en Chile. El mismo Swift accionaba sus detectores de rayos—X y rayos ultravioleta. Un equipo polaco (Pi of the Sky) pudo filmar el acontecimiento. La contrapartida visible alcanzó una magnitud de 5 a 6. Es el límite de una luminosidad localizable a simple vista. Si alguien, teniendo por encima de él un cielo despejado y de alta calidad, hubiera levantado la mirada en ese instante hacia la constelación de Bouvier, podría haber visto un destello minúsculo. Pero cuatro minutos más tarde, tal como lo midió el grupo polaco Pi of the Sky, la luminosidad descendía bruscamente, la magnitud cayó hasta 11 (la magnitud indica el inverso de la luminosidad).

Durante algunos minutos, la luminosidad era 2,5 millones de veces mayor que la más luminosa de las surpernovas observadas ese día. ¡Sin embargo, los instrumentos en el suelo como el VLT, indicaban una diferencia hacia el rojo de 0,94, lo que se corresponde a una distancia de 7,5 mil millones de años luz, es decir la mitad del radio del universo observable! La energía liberada por el astro generador de esta explosión debió pues ser enorme. Desde muy lejos, durante algunos minutos del estallido, GRB 080319B fue el más lejano de los astros visibles a simple vista. A modo de comparación, el objeto más lejano que nuestros ojos pueden ver es la galaxia del Triángulo (M33), con una magnitud de 5,7 y situada a 2,9 millones de años de luz de distancia.

http://www.nasa.gov/images/content/283511main_fermigrop_pulsarmodel_HI.jpg

También el Fermi ha descubierto un nuevo tipo de Púlsar. Aproximadamente tres veces por segundo, un cadáver estelar de 10.000 años de antigüedad lanza un haz de rayos gamma en dirección a la Tierra. El objeto, llamado pulsar, fue recientemente descubierto por el Telescopio Espacial Fermi de Rayos Gamma, de la NASA, y es el primero que “parpadea” en rayos gamma puros.

Les queda ahora a los astrónomos explicar la potencia excepcional de esta emisión. Es posible por ejemplo, que la Tierra hubiera estado situada por casualidad, precisamente en el centro del haz de radiación emitido por el astro que estalló. No hay duda que actualmente, numerosos astrofísicos están depurando los datos de todos los instrumentos que captaron a GRB 080319B durante sus cuatro minutos de celebridad.

No siempre sabemos explicar el origen de las cosas y, a medida que nuevos aparatos tecnológicos nos van desvelando los secretos del Universo, podemos ser más consciente de cómo funciona na Naturaleza y por qué de ciertos sucesos. Sin embargo, y, a pesar de todos esos adelantos, algunos se siguen empeñando en retroceder en el tiempo y participar en rituales conmemoritovs que hoy… ¡tienen poco sentido!

En astronomía, hablamos de contrapartida óptica cuando un objeto ha sido descubierto primero en el campo de los rayos—X, los rayos gamma, o en el campo de radio. El término se utiliza particularmente para los estallidos de rayos gamma que son unos destellos muy cortos de fotones muy energéticos. Estos estallidos son detectados en primer lugar por los satélites que operan en rayos—X y gamma, antes de ser observados algunas horas más tarde ópticamente o en infrarrojo, para luego apagarse.

En fin, seguimos avanzando y, los distintos proyectos y misiones de la ESA y la NASA de manera muy destacada sobre otros, nos llevarán al fín a saber sobre, muchas de las incognitas que hoy, aún no podemos resolver. Teniendo en cuenta la vastedad del Universo y los muchos secretos que guarda, el camino será largo y, sobre todo, fascinante.

emilio silvera

¡Queremos saber!

 

Como cada día desde hace ya algún tiempo, aquí dejamos un retazo sobre el saber del mundo, del Universo y del estudio de los cuerpos celestes y sus movimientos, los fenómenos ligados a ellos y, sin duda, es la ciencia más antigua que nuestra especie conoce. Por otra parte, también hablamos maravillados de la capacidad de nuestra mente, la máquina más compleja que se conoce y que, para nuestro propio asombro, es capaz de generar pensamientos e imaginar el futuro que llegará. La vida, también ha ocupado una buena parte de nuestro tiempo en este lugar y hemos hablado de ella, de la que está presente en nuestro planeta y, de la posible “vida extraterrestre”, posibilidad enorme en este universo nuestro, y, con esas y otras cuestiones de interés, hemos hecho camino juntos, en armonía y siempre tratando de conseguir ese saber que es el sustento de nuestra enorme curiosidad. Claro que, la Física, esa disciplina que nos dice como funciona la Naturaleza, ocupó una gran parte del recorrido.

Estamos empeñado en acercar el Universo a todos, y, aquí recuerdo una de las frases utilizadas en la conmemoración del Año Internacional de la Astronomía: “El Universo para que lo conozcas”. Hemos logrado (al menos así lo creo) que muchos han adquirido nuevos conocimientos a través de este lugar (también nosotros lo hemos adquirido de ellos), y, siendo así (que lo es), el esfuerzo ha valido la pena. Veamos ahora, otro pasaje del saber del mundo.

Como dijo Kart Raimund Popper, filósofo británico de origen austriaco (Viena, 1902 – Croydon, 1.994) que realizó sus mas importantes trabajos en el ámbito de la metodología de la ciencia: “cuanto más profundizo en el saber de las cosas, más consciente soy de lo poco que sé. Mis conocimientos son finitos pero, mi ignorancia, es infinita“.

Está claro que la mayoría de las veces, no hacemos la pregunta adecuada porque nos falta conocimiento para realizarla. Así, cuando se hacen nuevos descubrimientos nos dan la posibilidad de hacer nuevas preguntas, ya que en la ciencia, generalmente, cuando se abre una puerta nos lleva a una gran sala en la que encontramos otras puertas cerradas y tenemos la obligación de buscar las llaves que nos permitan abrirlas para continuar. Esas puertas cerradas esconden las cosas que no sabemos y las llaves que las pueden abrir son retazos de conocimientos que nos permiten entrar para descirrer la cortina que esconde los secretos de la Naturaleza, de la que en definitva, formamos parte.

 La nebulosa Cabeza de Caballo

¡Cuánto hay ahí, en esa bella Imagen de arriba! En espesas nubes moleculares que se concentran en vórtices obligadas por la Gravedad, nacen nuevas estrellas y nuevos mundos. Ahí se transforman los matriales sencillos como el Hidrógeno en otros más complejos y, la radiación de las jóvenes estrellas nuevas masivas, tiñen de rojo el gas y el povo del lugar, mientras ellas, presumidas, se exhiben rodeadas de ese azul suave que las distingue de aquellas otras más antiguas, que tiñen de amarillo y rojo toda la región.

¿Qué sería de la cosmología actual sin ? Es la ecuación de Einstein donde es el tensor energía-momento que mide el contenido de materia-energía, mientras que es el Tensor de curvatura de Riemann contraído que nos dice la cantidad de curvatura presente en el hiperespacio.

 

También esa ecuación nos habló de la existencia de Agujeros negros, esos objetos de densidad “infinita” en los que dejan de existir el espacio y el tiempo. La singularidad es el punto matemático en el que ciertas cantidades físicas alcanzan valores infinitos. Así nos lo dice la relatividad general: la curvatura del espacio-tiempo se hace infinita en un agujero negro.

La cosmología estaría 100 años atrás sin esta ecuación.

Einstein, con sus dos versiones de la relatividad que nos descubrió un universo donde la velocidad estaba limitada a la de la luz, donde la energía estaba escondida, quieta y callada, en forma de masa, y donde el espacio y el tiempo se curva y distorsiona cuando están presentes grandes objetos estelares, nos descubrio un Universo nuevo, un mundo fantástico de posibilidades ilimitadas en el que podían ocurrir maravillas como, por ejemplo, conseguir que el tiempo transcurriera más lentamente y dónde reside la fuente de la energía.

No siempre hemos sabido utilizar de manera adecuada los conocimientos que las inteligencias nos han cedido, y, como en el caso que se refleja en la Imagen de arriba, hemos utilizado la ecuación E = mc2 para hacernos daño a nosotros mismos. ¿Aprenderemos alguna vez?

 http://univerpuebla.files.wordpress.com/2010/12/espacio.jpg

Desde épocas ancestrales, nuestra especie siempre miró hacía el cielo con temor, ¿qué eran aquellos puntitos brillantes? ¿qué mantenía al Sol durante el día y a la Luna por las noches allá arriba? ¿dónde se sujetaban para no caer? La fascinación por los astros del cielo ha sido una constante en nuestras vidas que nos llevó, llegado el momento, a estudiar sus movimientos y secretos: La Astronomía.

En lo concerniente a cambios y transformaciones, el que más me ha llamado siempre la atención es el de las estrellas que se forman a partir de gas y polvo cósmico. Nubes enormes de gas y polvo (la 2ª imagen de arriba) se van juntando. Sus moléculas cada vez más apretadas se rozan, se ionizan y se calientan hasta que en el núcleo central de esa bola de gas caliente, la temperatura alcanza millones de grados. La enorme temperatura hace posible la fusión de los protones y, en ese instante, nace la estrella que brillará durante miles de millones de años y dará luz y calor. Su ciclo de vida estará supeditado a su masa. Si la estrella es supermasiva, varias masas solares, su vida será más corta, ya que consumirá el combustible nuclear de fusión (hidrógeno, helio, litio, oxígeno, etc) con más voracidad que una estrella mediana como nuestro Sol, de vida más duradera.

 

Una estrella, como todo en el universo, está sostenida por el equilibrio de dos fuerzas contrapuestas; en este caso, la fuerza que tiende a expandir la estrella (la energía termonuclear de la fusión) y la fuerza que tiende a contraerla (la fuerza gravitatoria de su propia masa). Cuando finalmente el proceso se detiene por agotamiento del combustible de fusión, la estrella pierde la fuerza de expansión y queda a merced de la fuerza de gravedad; se hunde bajo el peso de su propia masa, se contrae más y más, y en el caso de estrellas súper masivas, se convierten en una singularidad, una masa que se ha comprimido a tal extremo que acaba poseyendo una fuerza de gravedad de una magnitud difícil de imaginar para el común de los mortales.

Para hacernos una idea y entender algo mejor la fuerza de gravedad que puede generar la singularidad de un agujero negro (que es el destino final las estrellas súper masivas), pongamos el ejemplo de un objeto más cercano, el planeta Tierra.

La Tierra desde el espacio

 

A nosotros nos puede parecer enorme, es el planeta que acoge a toda la Humanidad. Sin embargo, en el contexto del Universo y comparada con otros objetos cosmológicos, es menos que una mota de polvo y, si pensamos en ello, quizás (sólo quizás), podamos llegar a la conclusión de que debemos cambiar y mirar las cosas desde otras perspectivas, al fin y al cabo no somos tan importantes como algunas veces podemos creer.

La Tierra, un objeto minúsculo en comparación con esos objetos súper masivos estelares, genera una fuerza de gravedad que, para escapar de ella, una nave o cohete espacial tiene que salir disparado desde la superficie terrestre a una velocidad de 11’18 km/s; el sol exige 617’3 km/s. Es lo que se conoce como velocidad de escape, que es la velocidad mínima requerida para escapar de un campo gravitacional que, lógicamente, aumenta en función de la masa del objeto que la produce. El objeto que escapa puede ser una cosa cualquiera, desde una molécula de gas a una nave espacial. La velocidad de escape de un cuerpo está dada por , donde G es la constante gravitacional, M es la masa del cuerpo y R es la distancia del objeto que escapa del centro del cuerpo. Un objeto que se mueva con una velocidad menor que la de escape entra en una órbita elíptica; si se mueve a una velocidad exactamente igual a la de escape, sigue una órbita parabólica, y si el objeto supera la velocidad de escape, se mueve en una trayectoria hiperbólica y rompe la atadura en que la mantenía sujeto al planeta, la estrella o el objeto que emite la fuerza gravitatoria.

 

Un agujero negro destruyó y engulló un sol al completo en una de las mayores y brillantes explosiones cósmicas observadas hasta el momento, informó un grupo de investigadores dirigidos por Andrew Levan, de la universidad británica Warwick en la revista estadounidense “Science”.

La mayor velocidad que es posible alcanzar en nuestro universo es la de la luz, c, velocidad que alcanza en el vacío y que es de 299.793’458 km/s. Muchas veces se ha intentado contradecir este postulado de Einstein en su relatividad especial (hace poco con los neutrinos), sin embargo, nunca se consiguió, la teoría del maestre sigue firme e inamovible en sus dos versiones.

Pues bien, es tal la fuerza de gravedad de un agujero negro que ni la luz puede escapar de allí; la singularidad la absorbe, la luz desaparece en su interior, de ahí su nombre, agujero negro, cuando la estrella supermasiva se contrae, llega a un punto que desaparece de nuestra vista. De acuerdo con la relatividad general, cabe la posibilidad de que una masa se comprima y reduzca sin límites su tamaño y se auto confine en un espacio infinitamente pequeño que encierre una densidad y una energía infinitos. Allí, el espacio y el tiempo dejan de existir.

 

Las singularidades ocurren en el Big Bang, en los agujeros negros y, si finalmente se produjera, en el Big Crunch (que se podría considerar como una reunión de todos los agujeros negros generados por el paso del tiempo en el universo y que nos llevará a un fin que sería el nuevo comienzo).

Las singularidades de los agujeros negros están rodeados por una circunferencia invisible a su alrededor que marca el límite de su influencia. El objeto que traspasa ese límite es atraído, irremisiblemente, hacia la singularidad que lo engulle, sea una estrella, una nube de gas o cualquier otro objeto cósmico que ose traspasar la línea que se conoce como horizonte de sucesos del agujero negro.

La existencia de los agujeros negros fue deducida por Schwarzschild, en el año 1.916, a partir de las ecuaciones de Einstein de la relatividad general. Este astrónomo alemán predijo su existencia, pero el nombre de agujero negro se debe a Jhon Wheeler. Así, el conocimiento de la singularidad está dado por la ecuación de Einstein que al principio reseñamos, y más tarde, por la observación de las señales que la presencia del agujero generan. Es una fuente emisora de rayos X que se producen al engullir materia que traspasa el horizonte de sucesos y es atrapada hacia la singularidad, donde desaparece para siempre sumándose a la masa del agujero cada vez mayor.

 

Esta serie de ilustraciones muestra una estrella amarilla que se acerca demasiado a un agujero negro gigante en el centro de la galaxia RX J1242-11. Al acercarse al agujero negro, es estirada y destrozada por la marea gravitacional. Aunque una pequeña parte del material es atrapada por el agujero negro y forma un disco en torno suyo, la mayor parte de los desechos gaseosos escapan del agujero negro. En el disco, el gas se calienta a millones de grados antes de caer en el agujero negro, por lo que produce rayos X. [ESA]

En el centro de nuestra galaxia, la Vía Láctea, ha sido detectado un enorme agujero negro, ya muy famoso, llamado Cygnus X-1. Después de todo, la velocidad de la luz, la máxima que podemos alcanzar en nuestro universo, no puede vencer la fuerza de gravedad del agujero negro que la tiene confinada para siempre. En nuestra galaxia, con cien mil años luz de diámetro y unos doscientos mil millones de estrellas, ¿cuántos agujeros negros habrá?

 [ngc7331_peris.jpg]

No todas las cosas del Universo (aunque hablemos de ellas), son totalmente comprendidas por nosotros, los humanos que, tenemos conformadas nuestras mentes en un mundo de tres dimensiones y, en realidad, en comparación con la inmensidad del Cosmos, no dejamos de ser una pequeña conformación compuesta por una sola estrella corriente, nada especial, de las que existen miles de millones en nuestra propia Galaxia. Nunca podremos hacernos una idea exacta de esas inmensas distancias, de esos inmensos objetos y, de esas inconmensurables maravillas que en el Universo están presentes.

Para mí, la cosa está clara: el tiempo inexorable en su transcurrir es imparable, el tic tac del reloj cósmico sigue y sigue andando al ritmo que el universo le ha marcado, sin que nada lo pueda parar, miles o cientos de miles, millones y millones de estrellas súper masivas explotarán en brillantes supernovas para convertirse en temibles agujeros negros, y, nosotros, testigos por un “corto espacio de tiempo” de tales maravillas, sufrimos porque sabemos que, posiblemente, nuestros conocimientos adquiridos irán a parar a otros que, aunque construidos por nuestra especie, ya no serán humanos.

 SI/AAAAAAAAAAg/J_Jjl3CkO_o/s1600/tecnologia+2.jpg" alt="" width="630" height="609" />

¡No! Ninguna mano mueve los hilos. Simplemente se trata de la dinámica que nos impone el Universo. Todo marcha a su ritmo, nada permanece y todo se destruye para que todo siga igual. Los ciclos de destrucción y construcción son continuos, de ellos surgen las galaxias y sus miríadas de estrellas, los mundos y en ellos la vida.

Llegará un momento que el número de agujeros negros en las galaxias será de tal magnitud que comenzarán a fusionarse unos con otros hasta que todo el universo se convierta en un inmenso agujero negro, una enorme singularidad, lo único que allí estará presente: la gravedad. Claro que también, en función de la Densidad Crítica que realmente tenga el Universo (el Omega Negro, o, la cantidad de materia que contenga), se podría expandir para siempre, las galaxias se alejarán las unas de las otras y el frío, se hará dueño de todo, la muerte térmica llegará con el cero absoluto, es decir, -273 ºC, allí, ni los átomos se podrían mover y, menos la vida.

Esa fuerza de la naturaleza que ahora está sola, no se puede juntar con las otras fuerzas que, como se ha dicho, tienen sus dominios en la mecánica cuántica, mientras que la gravitación residen en la inmensidad del cosmos; las unas ejercen su dominio en los confines microscópicos del átomo, mientras que la otra sólo aparece de manera significativa en presencia de grandes masas estelares. Allí, a su alrededor, se aposenta curvando el espacio y distorsionando el tiempo.

 Las máquinas del tiempo I: La teoría de los viajes temporales

El tejido espacio-temporal se distorsiona

La otra posibilidad es reunión final de agujeros negros será la causa de que la Densidad Crítica sea superior a la ideal. La gravedad generada por el inmenso agujero negro que se irá formando en cada galaxia tendrá la consecuencia de parar la expansión actual del universo. Todas las galaxias que ahora están separándose las unas de las otras se irán frenando hasta parar y, despacio al principio pero más rápido después, comenzarán a recorrer el camino hacia atrás. Finalmente, toda la materia será encontrada en un punto común donde chocará violentamente formando una enorme bola de fuego.

Antes de que eso llegue, tendremos que resolver el primer problema: la muerte del Sol.

Los científicos se han preguntado a veces qué sucederá eventualmente a los átomos de nuestros cuerpos mucho tiempo después de que hayamos muerto. La posibilidad más probable es que nuestras moléculas vuelvan al Sol. En páginas anteriores he explicado el destino del Sol: se agotará su combustible de hidrógeno y fusionará helio; se hinchará en gigante roja y su órbita es probable que sobrepase la Tierra y la calcine; las moléculas que hoy constituyen nuestros cuerpos serán consumidas por la atmósfera solar.

 Carl Sagan, 1934-1996

Carl Sagan pintó el cuadro siguiente:

“Dentro de miles de millones de años a partir de ahora, habrá un último día perfecto en la Tierra… Las capas de hielo Ártica y Antártica se fundirán, inundando las costas del mundo. Las altas temperaturas oceánicas liberarán más vapor de agua al aire, incrementando la nubosidad y escondiendo a la Tierra de la luz solar retrasando el final. Pero la evolución solar es inexorable. Finalmente los océanos hervirán, la atmósfera se evaporará en el espacio y nuestro planeta será destruido por una catástrofe de proporciones que ni podemos imaginar.”

 

En una escala de tiempo de varios miles de millones de años, debemos enfrentarnos al hecho de que la Vía Láctea, en la que vivimos, morirá. Más exactamente, vivimos en el brazo espiral Orión de la Vía Láctea. Cuando miramos al cielo nocturno y nos sentimos reducidos, empequeñecidos por la inmensidad de las luces celestes que puntúan en el cielo, estamos mirando realmente una minúscula porción de las estrellas localizadas en el brazo de Orión. El resto de los 200 mil millones de estrellas de la Vía Láctea están tan lejanas que apenas pueden ser vistas como una cinta lechosa que cruza el cielo nocturno.

Aproximadamente a dos millones de años luz de la Vía Láctea está nuestra galaxia vecina más cercana, la gran galaxia Andrómeda, dos o tres veces mayor que nuestra galaxia. Las dos galaxias se están aproximando a 125 km/s, y chocarán en un periodo de 5 a 10.000 millones de años. Como ha dicho el astrónomo Lars Hernquist de la Universidad de California en Santa Cruz, esta colisión será “parecida a un asalto. Nuestra galaxia será literalmente consumida y destruida“. Pero esa, es otra historia.

emilio silvera

¡El Universo! ¿Sería eso lo que pasó?

Se cree que cuando el universo se expandió y se enfrió a unos 3000 ºK, se volvió transparente a la radiación, que es la que observamos en la actualidad, mucho más fría y diluida, como radiación térmica de microondas. El descubrimiento del fondo de microondas en 1.956 puso fin a una larga batalla entre el Big Bang y su rival, la teoría del universo estacionario de Fred Hoyle y otros, que no podía explicar la forma de cuerpo negro del fondo de microondas. Es irónico que el término Big Bang tuviera inicialmente un sentido burlesco y fue acuñado por Hoyle, contrario a la teoría del universo inflacionario que se inventó el término “¡La Gran Explosión!” para burlarse de la teoría.

Según los datos con los que podemos contar se ha elaborado un trayecto que nos cuenta la historia del Universo ¿Será cierta?

Cronología del Big Bang

Era

Duración de

Temperatura

Era de Planck

 0 a 10-43 seg.

a 10-34 K

Era de radiación

 10-43  a 30.000 años

desde 10-34  a 104 K

Era de la materia  30.000 años al presente (13.500.000.000 años).

desde 104 a 3 K actual

Los expertos han diseñado un proceso para fijar más claramente los hechos se queriendo extender la explicación evolutiva del universo en las fases principales que son:  Eras en la Historia del Big Bang

De la Materia

Es la era que comenzó cuando el efecto gravitacional de la materia comenzó a dominar sobre el efecto de presión de radiación. Aunque la radiación es no masiva, tiene un efecto gravitacional que aumenta con la intensidad de la radiación. Es más, a altas energías, la propia materia se comporta como la radiación electromagnética, ya que se mueve a velocidades próximas a la de la luz. En las etapas muy antíguas del universo, el ritmo de expansión se encontraba dominado por el efecto gravitacional de la presión de radiación, pero a medida que el universo se enfrió, este efecto se hizo menos importante que el efecto gravitacional de la materia. Se piensa que la materia se volvió predominante a una temperatura de unos 104 K, aproximadamente 30.000 años a partir del Big Bang. Este hecho marcó el comienzo de la era de la materia.

De la Radiación

Periodo entre 10-43 s (la era de Planck) y 300.000 años después del Big Bang. Durante este periodo, la expansión del universo estaba dominada por los efectos de la radiación o de las partículas rápidas (a altas energías todas las partículas se comportan como la radiación). De hecho, la era leptónica y la era hadrónica son ambas subdivisiones de la era de radiación. La era de radiación fue seguida por la era de la materia que antes he reseñado, durante la cual los partículas lentas dominaron la expansión del universo.

Con nuestro conocimiento actual de física de partículas de altas energías, podemos hacer avanzar el reloj hacia atrás a través de la teoría leptónica y la era hadrónica hasta una millonésima de segundo después del Big Bang, cuando la temperatura era de 1013 K. Utilizando una teoría más especulativa, los cosmólogos han intentado llevar el modelo hasta 1035 s después de la singularidad, cuando la temperatura era de 1028 K. Esa infinitesimal escala de longitud es conocida como límite de Planck,  = 10-35 m, que en la ley de radiación de Planck, es distribuida la energía radiada por un cuerpo negro mediante pequeños paquetes deiscretos llamados cuantos, en vez de una emisión continua. A estas distancias, la Graverdad está ausente para dejar actuar a la mecánica cuántica.

La teoría del Big Bang es capaz de explicar la expansión del universo, la existencia de una radiación de fondo cósmica y la abundancia de núcleos ligeros como el helio, el helio-3, el deuterio y el litio-7, cuya formación se predice que ocurrió alrededor de un segundo después del Big Bang, cuando la temperatura reinante era de 1010 K.

                                       Abundancia de núcleos ligeros en el universo temprano

Era Hadrónica

Corto periodo de tiempo entre 10-6 s y 10-5 s después del Big Bang en el que se formaron las partículas atómicas pesadas, como protones, neutrones, piones y kaones entre otras. Antes del comienzo de la era hadrónica, los quarks se comportaban como partículas libres. El proceso por el que se formaron los quarks se denomina transición de fase quark-hadrón. Al final de la era hadrónica, todas las demás especies hadrónicas habían decaído o se habían desintegrado, dejando sólo protones o neutrones. Inmediatamente después de esto el universo entró en la era leptónica.

Era Leptónica

Intervalo que comenzó unos 10-5 s después del Big Bang, en el que diversos tipos de leptones eran la principal contribución a la densidad del universo. Se crearon pares de leptones y antileptones en gran número en el universo primitivo, pero a medida que el universo se enfrió, la mayor parte de las especies leptónicas fueron aniquiladas. La era leptónica se entremezcla con la hadrónica y ambas, como ya dije antes, son subdivisiones de la era de la radiación. El final de la era leptónica se considera normalmente que ocurrió cuando se aniquilaron la mayor parte de los pares electrón-positrón, a una temperatura de 5×109 K, más o menos un segundo después del Big Bang. Después, los leptones se unieron a los hadrónes para formar átomos.

 

Así creemos que se formó nuestro universo, a partir de una “singularidad” que explotó expandiendo toda la densidad y energía a unas temperaturas terroríficas, y a partir de ese mismo instante conocido como Big Bang, nacieron, como hermanos gemelos, el tiempo y el espacio junto con la materia que finalmente desembocó en lo que ahora conocemos como universo.

El universo es el conjunto de todo lo que existe, incluyendo el espacio, el tiempo y la materia.  El estudio del universo se conoce como cosmología. Los cosmólogos distinguen al Universo con “U” mayúscula, significando el cosmos y su contenido, y el universo con “u” minúscula, que es normalmente un modelo matemático deducido de alguna teoría física como por ejemplo, el universo de Friedmann o el universo de Einstein–de Sitter. El universo real está constituido en su mayoría de espacios que aparentemente están vacíos, existiendo materia concentrada en galaxias formadas por estrellas, planetas, gases y otros objetos cosmológicos.

De los estudios y observaciones realizadas ahora sabemos que, el universo se está expandiendo, de manera que el espacio entre las galaxias está aumentando gradualmente, provocando un desplazamiento al rojo cosmológico en la luz procedente de los objetos distantes.

Un Universo cada vez más grande y más frío, dado que la expansión sigue y la materia se dispersa

Los astrónomos opinan que el 90 por 100 de los átomos de universo son hidrógeno, el 9 por 100 helio y el 1 por 100 elementos más complejos.  Una muestra de 100 gramos, o mejor 100 átomos, consistiría entonces en 90 átomos de hidrógeno, 9 de helio y 1 de oxígeno (por ejemplo). Los núcleos de los átomos de hidrógeno contendrían 1 nucleón cada uno: 1 protón. Los núcleos de los átomos de helio contendrían 4 nucleones cada uno: 2 protones y 2 neutrones. El núcleo del átomo de oxígeno contendría 16 nucleones: 8 protones y 8 neutrones. Los 100 átomos juntos contendrían, por tanto, 145 nucleones: 116 protones y 26 neutrones.

Existe una diferencia entre estos dos tipos de nucleones. El neutrón no tiene carga eléctrica y no es preciso considerar ninguna partícula que lo acompañe. Pero el protón tiene una carga eléctrica positiva, y como el universo es, según creemos, eléctricamente neutro en su conjunto, tiene que existir un electrón (con carga eléctrica negativa) por cada protón, creando así el equilibrio existente.

El Universo, en su conjunto, resulta neutro al estar las fuerzas compensadas y anularse las unas a las otras, es decir, en el núcleo de un átomo están los protones con carga positiva y para que el átomo alcance su estabilidad, el núcleo está orbitado por tantos electrones como protones allí existen y, de esa manera, nuestro mundo, el Universo en su conjunto es como lo podemos ver y, también, es posible nuestra presencia aquí gracias a ese equilibrio de dos fuerzas contrapuestas que se igualan para que todo eso ocurra.

De las demás partículas, las únicas que existen en cantidades importantes en el universo son los fotones, los neutrinos y posiblemente los gravitones, pero son partículas sin masa. Lo cierto es que nadie sabe dar una explicación consistente del origen de la materia y a partir de qué semilla pudo surgir. Sí, sabemos de esas partículas que la forman pero… ¿No habrá algo más que desconocemos?

SITRON+1.jpg" alt="" width="393" height="393" />

Isaac Asimov decía que por su parte,

La respuesta podía estar en la existencia de “energía negativa” que igualara la “energía positiva” ordinaria, pero con la particularidad de que cantidades iguales de ambos se unirían para dar nada como resultado” (es decir, que +1 y -1 sumados dan 0).”

Claro que también,  lo que antes era nada podría cambiar de pronto y convertirse en una pompa de “energía positiva” y otra pompa igual de “energía negativa”. De ser así, la pompa de energía positiva se convirtió en el universo que conocemos, mientras que en alguna otra parte, existiría el universo contrario, paralelo negativo.

El universo, en sus comienzos, produjo enormes cantidades de partículas de materia y de antimateria, y el número de una y otra no era igual sino que, no se sabe por qué razón, las partículas positivas eran más que las negativas. Todos sabemos que un protón, cuando se encuentra con un antiprotón (materia con antimateria) ambos se destruyen. Una vez destruidos todos los pares materia antimateria, quedó el sobrante de partículas positivas que es la materia de nuestro universo.

De esa manera se formaron, con esas partículas positivas y los electrones negativos (hadrones y leptones), grandes conglomerados de gas y polvo que giraban lentamente, fragmentándose en vórtices turbulentos que se condensaban finalmente en estrellas. Estos conglomerados de gas y polvo podían tener extensiones de años luz de diámetro y, en algunas regiones donde la formación de estrellas fue muy activa, casi todo el polvo y el gas fue a parar a una estrella u otra. Poco o nada fue lo que quedo en los espacios intermedios. Esto es cierto para los cúmulos globulares, las galaxias elípticas y el núcleo central de las galaxias espirales.

Camile Flammarion.jpg

En ese inmenso cúmulo de estrellas está presente una, la estrella π, de la que nos hablaba Camilo Flammarion que imaginó como una gran flota de naves se dirigía hacia aquella lejana estrella, y, se hacía la pregunta: ¿Llegaremos allí algún día? Los que hemos tenido la suerte de leer algunas de sus obras, recordamos algunas como:

La pluralidad de los mundos habitados.
Mundos imaginarios y reales los mundos.
Historias del infinito.

Está claro que hemos podido acceder a muchos conocimientos que no hace mucho tiempo eran impensables pero, las teorías de Einstein y Planck, deben ser sobrepasadas y debemos ir mucho más lejos, allí donde residen esas respuestas que hasta el momento nadie ha sabido dar y que responderán a preguntas que fueron posibles formular, gracias a Einstein y Planck, ya que, sin los conocimientos que ellos nos hicieron llegar, no podríamos intuir que hay muchas cosas que están más allá de sus postulados.

Como a otros muchos antes que yo, me gusta imaginar otros mundos que podrían ser y, si somos capaces de imaginarlos… ¡En alguna parte estarán! De la misma manera, los científicos deben dar rienda suelta a su imaginación y, apoyados en la ciencia que ya nos es familiar, dar un paso más hacia adelante y llegar, a esos otros postulados, a esas nuevas teorías que, haciendo viejas las anteriores, nos lleven hacia el futuro conociendo, ahora sí, un universo real y sin fantasías que, como la del Big Bang, nos tenga inmersos en una gran mentira.

emilio silvera

¡El Universo! ¿Sería eso lo que pasó?

Se cree que cuando el universo se expandió y se enfrió a unos 3000 ºK, se volvió transparente a la radiación, que es la que observamos en la actualidad, mucho más fría y diluida, como radiación térmica de microondas. El descubrimiento del fondo de microondas en 1.956 puso fin a una larga batalla entre el Big Bang y su rival, la teoría del universo estacionario de Fred Hoyle y otros, que no podía explicar la forma de cuerpo negro del fondo de microondas. Es irónico que el término Big Bang tuviera inicialmente un sentido burlesco y fue acuñado por Hoyle, contrario a la teoría del universo inflacionario que se inventó el término “¡La Gran Explosión!” para burlarse de la teoría.

Según los datos con los que podemos contar se ha elaborado un trayecto que nos cuenta la historia del Universo ¿Será cierta?

Cronología del Big Bang

Era

Duración de

Temperatura

Era de Planck

 0 a 10-43 seg.

a 10-34 K

Era de radiación

 10-43  a 30.000 años

desde 10-34  a 104 K

Era de la materia  30.000 años al presente (13.500.000.000 años).

desde 104 a 3 K actual

Los expertos han diseñado un proceso para fijar más claramente los hechos se queriendo extender la explicación evolutiva del universo en las fases principales que son:  Eras en la Historia del Big Bang

De la Materia

Es la era que comenzó cuando el efecto gravitacional de la materia comenzó a dominar sobre el efecto de presión de radiación. Aunque la radiación es no masiva, tiene un efecto gravitacional que aumenta con la intensidad de la radiación. Es más, a altas energías, la propia materia se comporta como la radiación electromagnética, ya que se mueve a velocidades próximas a la de la luz. En las etapas muy antíguas del universo, el ritmo de expansión se encontraba dominado por el efecto gravitacional de la presión de radiación, pero a medida que el universo se enfrió, este efecto se hizo menos importante que el efecto gravitacional de la materia. Se piensa que la materia se volvió predominante a una temperatura de unos 104 K, aproximadamente 30.000 años a partir del Big Bang. Este hecho marcó el comienzo de la era de la materia.

De la Radiación

Periodo entre 10-43 s (la era de Planck) y 300.000 años después del Big Bang. Durante este periodo, la expansión del universo estaba dominada por los efectos de la radiación o de las partículas rápidas (a altas energías todas las partículas se comportan como la radiación). De hecho, la era leptónica y la era hadrónica son ambas subdivisiones de la era de radiación. La era de radiación fue seguida por la era de la materia que antes he reseñado, durante la cual los partículas lentas dominaron la expansión del universo.

Con nuestro conocimiento actual de física de partículas de altas energías, podemos hacer avanzar el reloj hacia atrás a través de la teoría leptónica y la era hadrónica hasta una millonésima de segundo después del Big Bang, cuando la temperatura era de 1013 K. Utilizando una teoría más especulativa, los cosmólogos han intentado llevar el modelo hasta 1035 s después de la singularidad, cuando la temperatura era de 1028 K. Esa infinitesimal escala de longitud es conocida como límite de Planck,  = 10-35 m, que en la ley de radiación de Planck, es distribuida la energía radiada por un cuerpo negro mediante pequeños paquetes deiscretos llamados cuantos, en vez de una emisión continua. A estas distancias, la Graverdad está ausente para dejar actuar a la mecánica cuántica.

La teoría del Big Bang es capaz de explicar la expansión del universo, la existencia de una radiación de fondo cósmica y la abundancia de núcleos ligeros como el helio, el helio-3, el deuterio y el litio-7, cuya formación se predice que ocurrió alrededor de un segundo después del Big Bang, cuando la temperatura reinante era de 1010 K.

                                       Abundancia de núcleos ligeros en el universo temprano

Era Hadrónica

Corto periodo de tiempo entre 10-6 s y 10-5 s después del Big Bang en el que se formaron las partículas atómicas pesadas, como protones, neutrones, piones y kaones entre otras. Antes del comienzo de la era hadrónica, los quarks se comportaban como partículas libres. El proceso por el que se formaron los quarks se denomina transición de fase quark-hadrón. Al final de la era hadrónica, todas las demás especies hadrónicas habían decaído o se habían desintegrado, dejando sólo protones o neutrones. Inmediatamente después de esto el universo entró en la era leptónica.

Era Leptónica

Intervalo que comenzó unos 10-5 s después del Big Bang, en el que diversos tipos de leptones eran la principal contribución a la densidad del universo. Se crearon pares de leptones y antileptones en gran número en el universo primitivo, pero a medida que el universo se enfrió, la mayor parte de las especies leptónicas fueron aniquiladas. La era leptónica se entremezcla con la hadrónica y ambas, como ya dije antes, son subdivisiones de la era de la radiación. El final de la era leptónica se considera normalmente que ocurrió cuando se aniquilaron la mayor parte de los pares electrón-positrón, a una temperatura de 5×109 K, más o menos un segundo después del Big Bang. Después, los leptones se unieron a los hadrónes para formar átomos.

 

Así creemos que se formó nuestro universo, a partir de una “singularidad” que explotó expandiendo toda la densidad y energía a unas temperaturas terroríficas, y a partir de ese mismo instante conocido como Big Bang, nacieron, como hermanos gemelos, el tiempo y el espacio junto con la materia que finalmente desembocó en lo que ahora conocemos como universo.

El universo es el conjunto de todo lo que existe, incluyendo el espacio, el tiempo y la materia.  El estudio del universo se conoce como cosmología. Los cosmólogos distinguen al Universo con “U” mayúscula, significando el cosmos y su contenido, y el universo con “u” minúscula, que es normalmente un modelo matemático deducido de alguna teoría física como por ejemplo, el universo de Friedmann o el universo de Einstein–de Sitter. El universo real está constituido en su mayoría de espacios que aparentemente están vacíos, existiendo materia concentrada en galaxias formadas por estrellas, planetas, gases y otros objetos cosmológicos.

De los estudios y observaciones realizadas ahora sabemos que, el universo se está expandiendo, de manera que el espacio entre las galaxias está aumentando gradualmente, provocando un desplazamiento al rojo cosmológico en la luz procedente de los objetos distantes.

Un Universo cada vez más grande y más frío, dado que la expansión sigue y la materia se dispersa

Los astrónomos opinan que el 90 por 100 de los átomos de universo son hidrógeno, el 9 por 100 helio y el 1 por 100 elementos más complejos.  Una muestra de 100 gramos, o mejor 100 átomos, consistiría entonces en 90 átomos de hidrógeno, 9 de helio y 1 de oxígeno (por ejemplo). Los núcleos de los átomos de hidrógeno contendrían 1 nucleón cada uno: 1 protón. Los núcleos de los átomos de helio contendrían 4 nucleones cada uno: 2 protones y 2 neutrones. El núcleo del átomo de oxígeno contendría 16 nucleones: 8 protones y 8 neutrones. Los 100 átomos juntos contendrían, por tanto, 145 nucleones: 116 protones y 26 neutrones.

Existe una diferencia entre estos dos tipos de nucleones. El neutrón no tiene carga eléctrica y no es preciso considerar ninguna partícula que lo acompañe. Pero el protón tiene una carga eléctrica positiva, y como el universo es, según creemos, eléctricamente neutro en su conjunto, tiene que existir un electrón (con carga eléctrica negativa) por cada protón, creando así el equilibrio existente.

El Universo, en su conjunto, resulta neutro al estar las fuerzas compensadas y anularse las unas a las otras, es decir, en el núcleo de un átomo están los protones con carga positiva y para que el átomo alcance su estabilidad, el núcleo está orbitado por tantos electrones como protones allí existen y, de esa manera, nuestro mundo, el Universo en su conjunto es como lo podemos ver y, también, es posible nuestra presencia aquí gracias a ese equilibrio de dos fuerzas contrapuestas que se igualan para que todo eso ocurra.

De las demás partículas, las únicas que existen en cantidades importantes en el universo son los fotones, los neutrinos y posiblemente los gravitones, pero son partículas sin masa. Lo cierto es que nadie sabe dar una explicación consistente del origen de la materia y a partir de qué semilla pudo surgir. Sí, sabemos de esas partículas que la forman pero… ¿No habrá algo más que desconocemos?

SITRON+1.jpg" alt="" width="393" height="393" />

Isaac Asimov decía que por su parte,

La respuesta podía estar en la existencia de “energía negativa” que igualara la “energía positiva” ordinaria, pero con la particularidad de que cantidades iguales de ambos se unirían para dar nada como resultado” (es decir, que +1 y -1 sumados dan 0).”

Claro que también,  lo que antes era nada podría cambiar de pronto y convertirse en una pompa de “energía positiva” y otra pompa igual de “energía negativa”. De ser así, la pompa de energía positiva se convirtió en el universo que conocemos, mientras que en alguna otra parte, existiría el universo contrario, paralelo negativo.

El universo, en sus comienzos, produjo enormes cantidades de partículas de materia y de antimateria, y el número de una y otra no era igual sino que, no se sabe por qué razón, las partículas positivas eran más que las negativas. Todos sabemos que un protón, cuando se encuentra con un antiprotón (materia con antimateria) ambos se destruyen. Una vez destruidos todos los pares materia antimateria, quedó el sobrante de partículas positivas que es la materia de nuestro universo.

De esa manera se formaron, con esas partículas positivas y los electrones negativos (hadrones y leptones), grandes conglomerados de gas y polvo que giraban lentamente, fragmentándose en vórtices turbulentos que se condensaban finalmente en estrellas. Estos conglomerados de gas y polvo podían tener extensiones de años luz de diámetro y, en algunas regiones donde la formación de estrellas fue muy activa, casi todo el polvo y el gas fue a parar a una estrella u otra. Poco o nada fue lo que quedo en los espacios intermedios. Esto es cierto para los cúmulos globulares, las galaxias elípticas y el núcleo central de las galaxias espirales.

Camile Flammarion.jpg

En ese inmenso cúmulo de estrellas está presente una, la estrella π, de la que nos hablaba Camilo Flammarion que imaginó como una gran flota de naves se dirigía hacia aquella lejana estrella, y, se hacía la pregunta: ¿Llegaremos allí algún día? Los que hemos tenido la suerte de leer algunas de sus obras, recordamos algunas como:

La pluralidad de los mundos habitados.
Mundos imaginarios y reales los mundos.
Historias del infinito.

Está claro que hemos podido acceder a muchos conocimientos que no hace mucho tiempo eran impensables pero, las teorías de Einstein y Planck, deben ser sobrepasadas y debemos ir mucho más lejos, allí donde residen esas respuestas que hasta el momento nadie ha sabido dar y que responderán a preguntas que fueron posibles formular, gracias a Einstein y Planck, ya que, sin los conocimientos que ellos nos hicieron llegar, no podríamos intuir que hay muchas cosas que están más allá de sus postulados.

Como a otros muchos antes que yo, me gusta imaginar otros mundos que podrían ser y, si somos capaces de imaginarlos… ¡En alguna parte estarán! De la misma manera, los científicos deben dar rienda suelta a su imaginación y, apoyados en la ciencia que ya nos es familiar, dar un paso más hacia adelante y llegar, a esos otros postulados, a esas nuevas teorías que, haciendo viejas las anteriores, nos lleven hacia el futuro conociendo, ahora sí, un universo real y sin fantasías que, como la del Big Bang, nos tenga inmersos en una gran mentira.

emilio silvera

¡El Universo! Hay tanto que contar…

Einstein tuvo pronto que modificar ligeramente sus ecuaciones de universo, pues estas no eran compatibles con la ley de la conservación de la energía. Esto constriñó a Einstein a modificar sus ecuaciones de Universo, que adquirieron su forma definitiva tras la publicación en 1915 del artículo Aplicación de la teoría de la relatividad general al campo gravitatorio:

 Archivo:Star collapse to black hole.png

 En la imagen se reproducen las ondas gravitatorias emitidas por una estrella durante su colapso. En las ecuaciones de Einstein se descubre el misterioso proceso que ocurre en las estrellas al final de sus vidas y de como se convierten en agujeros negros.

¿Qué sería de la cosmología actual sin la ecuación de Einstein de la Relatividad General? Es la ecuación de Einstein donde el tensor energía-momento mide el contenido de materia-energía, mientras que es el Tensor de curvatura de Riemann contraído el que nos dice la cantidad de curvatura presente en el hiperespacio. La cosmología estaría 100 años atrás sin esta ecuación.

Los físicos teóricos realizan un trabajo impagable. Con imaginación desbordante efectúan continuamente especulaciones matemáticas referidas a las ideas que bullen en sus mentes. Claro que, de tener éxito, no sería la primera vez que descubrimientos teóricos en la ciencia física terminan dando en el clavo y dejando al descubierto de manera espectacular lo que realmente ocurre en la naturaleza. Los ejemplos son muchos:

Los físicos teóricos son seres superiores porque viven en las nubes

Alguna vez se dijo que, los físicos teóricos son seres superiores porque viven en las nubes. Ahí tenemos a Feynmann inmerso en su mundo de ecuaciones que quieren profundizar en el “universo” cuántico de las partículas subatómicas que se encuentran en las entrañas de la materia. Dirac y su positrón, Heisenberg con su principio de incertidumbre, Schrödinger con su función de onda, Gell-Mann y los Quarks…Imaginación desbordante

  • Planck, con su cuanto de acción, h, que trajo la mecánica cuántica.
  • Einstein, con sus dos versiones de la relatividad que nos descubrió un universo donde la velocidad estaba limitada a la de la luz, donde la energía estaba escondida, quieta y callada, en forma de masa, y donde el espacio y el tiempo se curva y distorsiona cuando están presentes grandes objetos estelares. Además, nos dijo la manera de conseguir que el tiempo transcurriera más lentamente y nos avisó de la existencia de agujeros negros.
  • Heisemberg nos abrió los ojos hacia el hecho de que nunca podríamos saberlo todo al mismo tiempo, su Principio de Incertidumbre dejó al descubierto nuestras limitaciones.
  • Schrödinger, con su función de onda probabilística, que por medio de una ecuación matemática nos ayuda a encontrar la situación de una partícula.
  • P. Dirac, el físico teórico y matemático que predijo la existencia de la antimateria. Poco después de publicar su idea, descubrieron el positrón.

Así podríamos continuar elaborando una lista interminable de logros científicos que comenzaron con simples especulaciones deducidos de la observación sumada a la imaginación. Son muchas las cuestiones en las que, los físicos teóricos nos llevan a viajes alucinantes.

Esto es precisión en la medida: El electrón es una esfera perfecta, más o menos una parte en un billón. El resultado procede del último experimento en una larga lista para estudiar la forma de la partícula fundamental que porta la carga eléctrica.

Otros postulan que un electrón no es un “punto” sin estructura interna y de dimensión cero, sino una cuerda minúscula que vibra en un espacio-tiempo de más de cuatro dimensiones. Un punto no puede hacer nada más que moverse en un espacio tridimensional. De acuerdo con esta teoría a nivel “microscópico” se percibiría que el electrón no es en realidad un punto, sino una cuerda en forma de lazo. Una cuerda puede hacer algo además de moverse, puede oscilar de diferentes maneras. Si oscila de cierta manera, entonces, macroscópicamente veríamos un electrón; pero si oscila de otra manera, entonces veríamos un fotón, o un quark, o cualquier otra partícula del modelo estándar. Esta teoría, ampliada con otras como la de las supercuerdas o la Teoría M pretenden alejarse de la concepción del punto-partícula.

Actualmente, la teoría de cuerdas es la más considerada para tener una teoría unificada o Teoría del todo, es decir, una teoría capaz de describir todos los fenómenos ocurridos en la naturaleza debido a las cuatro fuerzas fundamentales: la fuerza gravitacional, la fuerza electromagnética y las fuerzas de interacción nuclear fuerte y débil.

El espacio-tiempo en el que se mueven las cuerdas y p-branas de la teoría no sería el espacio-tiempo ordinario de 4 dimensiones sino un espacio de tipo Kaluza-Klein, al que a las cuatro dimensiones convencionales se añaden 6 dimensiones compactificadas en forma de variedad de Calabi-Yau. Por tanto convencionalmente en la teoría de cuerdas existe 1 dimensión temporal, 3 dimensiones espaciales ordinarias y 6 dimensiones compactificadas e inobservables en la práctica.

La inobservabilidad de las dimensiones adicionales está ligada al hecho de que éstas están compactificadas, y sólo son relevantes a escalas tan pequeñas como la longitud de Planck. Igualmente con la precisión de medida convencional las cuerdas cerradas con una longitud similar a la longitud de Planck se asemejan a partículas puntuales.

Uno de los problemas ligados a las supercuerdas y que más resalta es el que tiene que ver con la propia pequeñez de las cuerdas, esos infinitesimales objetos vibrantes. Mientras más pequeño es algo, más difícil es de ver. Estas cuerdas son tan pequeñas que nuestra actual tecnología no es suficiente para bajar a esa escala microscópica para permitirnos experimentar en esas dimensiones; la energía necesaria para ello, no está a nuestro alcance en el mundo actual. Esa es la frustración de sus creadores y adeptos; no pueden demostrarla o ver si están equivocados. En la ciencia, no basta con sólo una bonita teoría bien elaborada y de fascinante presencia; hay que ir más allá, experimentar y comprobar con certeza lo que nos está diciendo.

          ¿Existen en nuestro Universo dimensiones ocultas?

La teoría es avanzada y tiene problemas que se encuentran dentro de los enunciados de sus propios conceptos. Para desarrollar su formulación es necesario aplicar al menos diez dimensiones y, en algunos casos, se ha llegado hasta un número de veintiséis: sólo vemos tres dimensiones de espacio y una de tiempo, el resto de dimensiones adicionales están enroscadas en el límite de Planck e invisibles para nosotros, ya que en el Big Bang, las dimensiones que podemos ver se expandieron, mientras que las otras permanecieron compactadas. Hay numerosas explicaciones que tratan de decirnos el motivo de que estas dimensiones permanecieran en su estado primitivo, pero ninguna parece muy convincente.

          ¿Sabremos alguna vez comprender la verdadera naturaleza del Universo?

Sin embargo, y a pesar de tantos inconvenientes, cada día que pasa la teoría M tiene más amigos. Parece la única candidata seria a que algún día se convierta en la teoría de Todo. En ella encontramos todas las fuerzas, explica todas las partículas y la materia, la relatividad, la mecánica cuántica y también la luz; están allí presentes, perfectamente encajadas en una perfecta simetría y sin que surjan infinitos sin sentido como ocurre con otras teorías. Es la esperanza de muchos, la llave que necesitamos para abrir la puerta hacia el futuro.

En el universo en que vivimos, nada desaparece; con el tiempo se cumplen los ciclos, todas las cosas y se convierten en otras distintas, es un proceso irreversible. Nada se destruye, simplemente cambia y, de esa manera, la materia “inerte” llega a convertirse en materia evolucionada hasta el punto de adquirir “vida” y ser consciente. Todo comienza en lugares como el que abajo podeis contemplar. Ahí se forman y nacen las estrellas que, más tarde, durante la secuencia principal y también al final de sus vidas, crean materiales complejos y rregresan a su origen de Nebulosas, mientras la mayor parte del material que la conforma, queda convertida (dependiendo de su masa) en una enana blanca, estrella de neutrones o agujero negro.

La Piel de Zorra, el Unicornio, y el Arbol de Navidad

Las Nebulosas como estas donde el gas hidrógeno es el protagonista al hacer posible el nacimiento de nuesvas estrellas mediante la compleja unión del gas con nubes de polvo creando intensas zonas de radiación ultravioleta que ionizan toda la región circundante, todo ello, forma una amalgama con la rojiza emisión nebular escitada por la energética radiación de las estrellas nuevas que inciden en las oscuras nubes de polvo haciéndolas radiantes hasta formar una azulada nebulosa de reflexión.

En lo concerniente a cambios y transformaciones, el que más me ha llamado siempre la atención es el de las estrellas que se forman a partir de gas y polvo cósmico. Nubes enormes de gas y polvo se van juntando. Sus moléculas cada vez más apretadas se rozan, se ionizan y se calientan hasta que en el núcleo central de esa bola de gas caliente, la temperatura alcanza millones de grados. La enorme temperatura hace posible la fusión de los protones y, en ese instante, nace la estrella que brillará durante miles de millones de años y dará luz y calor. Su ciclo de vida estará supeditado a su masa. Si la estrella es supermasiva, varias masas solares, su vida será más corta, ya que consumirá el combustible nuclear de fusión (hidrógeno, helio, litio, oxígeno, etc) con más voracidad que una estrella mediana como nuestro Sol, de vida más duradera.

http://1.bp.blogspot.com/_rMKJIW2qoEg/THCWa9znCXI/AAAAAAAADeY/V8tml-iq_bQ/s1600/Nasa.+polvo+y+creaci%C3%B3n+espacial.jpg

                    Sería asombroso el que pudiéramos contemplar como se forman las estrellas

Una estrella, como todo en el universo, está sostenida por el equilibrio de dos fuerzas contrapuestas; en este caso, la fuerza que tiende a expandir la estrella (la energía termonuclear de la fusión) y la fuerza que tiende a contraerla (la fuerza gravitatoria de su propia masa). Cuando finalmente el proceso de fusión se detiene por agotamiento del combustible de fusión, la estrella pierde la fuerza de expansión y queda a merced de la fuerza de gravedad; se hunde bajo el peso de su propia masa, se contrae más y más, y en el caso de estrellas súper masivas, se convierten en una singularidad, una masa que se ha comprimido a tal extremo que acaba poseyendo una fuerza de gravedad de una magnitud difícil de imaginar para el común de los mortales.

Para hacernos una idea y entender algo mejor la fuerza de gravedad que puede generar la singularidad de un agujero negro (que es el destino final las estrellas súper masivas), pongamos el ejemplo de un objeto más cercano, el planeta Tierra.

La Tierra, un objeto minúsculo en comparación con esos objetos súper masivos estelares, genera una fuerza de gravedad que, para escapar de ella, una nave o cohete espacial tiene que salir disparado desde la superficie terrestre a una velocidad de 11,18 km/s; el sol exige 617’3 km/s. Es lo que se conoce como velocidad de escape, que es la velocidad mínima requerida para escapar de un campo gravitacional que, lógicamente, aumenta en función de la masa del objeto que la produce. El objeto que escapa puede ser una cosa cualquiera, desde una molécula de gas a una nave espacial. La velocidad de escape de un cuerpo está dada por , donde G es la constante gravitacional, M es la masa del cuerpo y R es la distancia del objeto que escapa del centro del cuerpo. Un objeto que se mueva con una velocidad menor que la de escape entra en una órbita elíptica; si se mueve a una velocidad exactamente igual a la de escape, sigue una órbita parabólica, y si el objeto supera la velocidad de escape, se mueve en una trayectoria hiperbólica y rompe la atadura en que la mantenía sujeto al planeta, la estrella o el objeto que emite la fuerza gravitatoria.

La mayor velocidad que es posible alcanzar en nuestro universo es la de la luz, c, velocidad que la luz alcanza en el vacío y que es de 299.792.458 metros por segundo.

Pues bien, es tal la fuerza de gravedad que genera un agujero negro que, ni la luz. puede escapar de allí; la singularidad la absorbe, la luz desaparece en su interior, de ahí su nombre, agujero negro, cuando la estrella supermasiva se contrae, llega a un punto que desaparece de nuestra vista. De acuerdo con la relatividad general, cabe la posibilidad de que una masa se comprima y reduzca sin límites su tamaño y se auto confine en un espacio infinitamente pequeño que encierre una densidad y una energía infinitos. Allí, el espacio y el tiempo dejan de existir.

Las singularidades ocurren en el Big Bang, en los agujeros negros y (si finalmente se produjera -que parece que no) en el Big Crunch (que se podría considerar como una reunión de todos los agujeros negros generados por el paso del tiempo en el universo y que nos llevaría a un final del que emergería un nuevo comienzo).

He leído en alguna parte, en relación a los agujeros negros, cosas como éstas: “…las condiciones únicas que se dan más allá del horizonte de sucesos (el punto de no retorno pasado el cual nada, ni siquiera la luz, puede escapar de su gravedad) de ciertos agujeros negros hace posible, en teoría, la existencia de vida y que ésta evolucione hasta dar lugar a civilizaciones avanzadas.” Bueno, sabemos poco pero, que dentro del agujero negro pueda existir y evolucionar la vida…es muy dudoso.

Las singularidades de los agujeros negros están rodeados por una circunferencia invisible a su alrededor que marca el límite de su influencia. El objeto que traspasa ese límite es atraído, irremisiblemente, hacia la singularidad que lo engulle, sea una estrella, una nube de gas o cualquier otro objeto cósmico que ose traspasar la línea que se conoce como horizonte de sucesos del agujero negro.

Un gran agujero negro tragándose una estrella fue observado por primera vez con un telescopio de la Nasa, en la constelación del Dragón, a cuatro mil millones de años luz de la Tierra.

j164449.357345 <a href=http://www.emiliosilveravazquez.com/blog/2013/01/13/%C2%A1el-universo-hay-tanto-que-contar/%22 /></p>
<p style=“El objeto fue llamado Swift J164449.3+57345. Fenómenos como este suceden cada 100 millones de años y son conocidos como “chorros relativístas”, que pueden tener una dimensión de cientos de años luz.” Está claro que, cuando se escribe sobre estos temas, muchos son los que se toman licencias literarias que nada tienen que ver con la realidad, ya que, no tenemos forma de saber con qué frecuencia se producen estos fenómenos que, según creo, son más cotidianos y habituales de lo que algunos puedan pensar.

        Karl Schwarzschild.

La existencia de los agujeros negros fue deducida por Schwarzschild, en el año 1.916, a partir de las ecuaciones de Einstein de la relatividad general. Este astrónomo alemán predijo su existencia, pero el nombre de agujero negro se debe a Wehleer.

Así, el conocimiento de la singularidad está dado por las matemáticas de Einstein y más tarde por la observación de las señales que la presencia del agujero generan. Es una fuente emisora de rayos X que se producen al engullir materia que traspasa el horizonte de sucesos y es atrapada hacia la singularidad, donde desaparece para siempre sumándose a la masa del agujero cada vez mayor.

En el centro de nuestra galaxia, la Vía Láctea, ha sido detectado un enorme agujero negro, ya muy famoso, llamado Cygnus X-1.

 

Usando un vasto conjunto de radiotelescopios, han realizado una medida directa de la distancia a Cygnus X-1, permitiéndoles concluir la masa de la estrella oscura que resulta ser tan grande que solo puede ser un A.N. También han descubierto que gira más rápido que la mayor parte de sus compañeros.

Fue identificado por primera vez como posible anfitrión de un agujero negro en 1971, Cygnus X-1 fue una de las primeras fuentes de rayos-X descubiertas por los astrónomos. Por fortuna, Cygnus X-1 emite ondas de radio y un equipo de estudiosos apuntaron al objeto con el conjunto de Líneas Muy Grandes (VLBA) que consta de diez radiotelescopios de 25 metros dispersos desde Nueva Inglaterra y las Islas Vírgenes a California y Hawai. Este enorme conjunto mide posiciones 100 veces mejor que el Telescopio Espacial Hubble.

Cygnus X-1 produjo resultados maravillosos y, el equipo pudo lograr una distancia de mucha precisión. La Paralaje indicó que Cygnus X-1 está a 6.050 años ñuz de la Tierra, con una incertidumbre de sólo 400 años-luz. A partir de esto, los astrónomos dudeucen que la estrella oscura es 14,8 veces más masiva que el Sol; la incertidumbre es sólo de una masa solar, por lo que el objeto está muy por encima de la linea divisoria de las estrellas de neutrones y los agujeros negros. La estrella Azul que la orbita es aún más masiva, con unas 19 masas solares.

Después de todo, la velocidad de la luz, la máxima del universo, no puede vencer la fuerza de gravedad del agujero negro que la tiene confinada para siempre. En nuestra galaxia, con cien mil años luz de diámetro y unos doscientos mil millones de estrellas, ¿cuántos agujeros negros habrá? Para mí, la cosa está clara: el tiempo es imparable, el reloj cósmico sigue y sigue andando sin que nada lo pare, miles o cientos de miles, millones y millones de estrellas súper masivas explotarán en brillantes supernovas para convertirse en temibles agujeros negros. Si eso es así como parece, llegará un momento que el número de agujeros negros en las galaxias será de tal magnitud que comenzarán a fusionarse unos con otros hasta que todo el universo se convierta en un inmenso agujero negro, una enorme singularidad, lo único que allí estará presente será: la gravedad. Así dice que era al principio, cuando surgió el Big bang.

Nuestro grupo local

La fuerza de Gravedad mantiene unidas a todas las galaxias del grupo local

 

¡La Gravedad! Esa fuerza de la naturaleza que ahora está sola, no se puede juntar con las otras fuerzas que, como se ha dicho, tienen sus dominios en la mecánica cuántica, mientras que la gravitación residen en la inmensidad del cosmos; las unas ejercen su dominio en los confines microscópicos del átomo, mientras que la otra sólo aparece de manera significativa en presencia de grandes masas estelares. Allí, a su alrededor, se aposenta curvando el espacio y distorsionando el tiempo. La Gravedad es la que determina la geometría del Universo.

Esa reunión final de agujeros negros (si finalmente sucediera) sería la causa de que la Densidad Crítica sea superior a la ideal. La gravedad generada por el inmenso agujero negro que se irá formando en cada galaxia tendrá la consecuencia de parar la expansión actual del universo. Todas las galaxias que ahora están separándose las unas de las otras se irán frenando hasta parar y, despacio al principio pero más rápido después, comenzarán a recorrer el camino hacia atrás. Finalmente, toda la materia será encontrada en un punto común donde chocará violentamente formando una enorme bola de fuego, el Big Crunch. Otra singularidad inicial de la que surgirá, un nuevo Universo.

Nosotros, instalados tan ricamente aquí en el planeta Tierra, tenemos la impresión de hallarnos sobre algo inmenso, ¡un mundo! que tiene océanos y montañas y de dimensiones muy grandes en el que ocurre todo aquello que afecta a nuestras vidas. Sin embargo, algunos objetos del Universo pueden llegar a ser inmensos y, si los comparamos con nuestro pequeño planeta… Veámos algunas de estas comparaciones: Ciertamente, la Tierra supera a Venus, Marte, Mercurio y el pequeño Plutón.

 

Claro que, la inmensa Tierra nos está dando una imagen engañosa de su grandeza que, al ser comparadas con otros objetos planetarios no queda bien parada. Abajo vemos a la Tierra diminuta al lado de neptuno, Urano, Saturno y la gigante Júpiter…

Si hablamos del Sol, nuestra estrella, y lo comparamos con el tamaño de la Tierra, podemos ver que incluso Júpiter, el gigante gaseoso, resulta ser minúsculo al lado de la estrella-

Pero no ya nuestro Sol, una simple estrella mediana, sino que, el mismo Sirius, esa estrella blanca enorme y luminosa, se nos queda pequeña al compararla con Pollux o Arcturus, no digamos en qué se nos queda nuestro Sol ante estas gigantescas estrellas pero, hay mucho más.

Si miramos la imagen de abajo, ya no se ve donde quedó el Sol, el mismo Arcturus parece rídiculo al lado de las grandes Rigel y Aldebaran, y, si nos detenemos en Betelgeuse o Antares, nos podemos marear ¡Qué enormidades!

En una escala de tiempo de varios miles de millones de años, debemos enfrentarnos al hecho de que la Vía Láctea, en la que vivimos, morirá. Más exactamente, vivimos en el brazo espiral Orión de la Vía Láctea. Cuando miramos al cielo nocturno y nos sentimos reducidos, empequeñecidos por la inmensidad de las luces celestes que puntúan en el cielo, estamos mirando realmente una minúscula porción de las estrellas localizadas en el brazo de Orión. El resto de los 200 mil millones de estrellas de la Vía Láctea están tan lejanas que apenas pueden ser vistas como una cinta lechosa que cruza el cielo nocturno.

Por aquí andamos nosotros, una región relativamente tranquila y preciosa. En el Brazo espiral de Orión a 30.000 a.l. del Centro Galáctico

Aproximadamente a dos millones de años luz de la Vía Láctea está nuestra galaxia vecina más cercana, la gran galaxia Andrómeda, casi dos veces mayor que nuestra galaxia. Las dos galaxias se están aproximando a 125 km/s, y chocarán en un periodo de 5 a 10.000 millones de años. Como ha dicho el astrónomo Lars Hernquist de la Universidad de California en Santa Cruz, esta colisión será “parecida a un asalto. Nuestra galaxia será literalmente consumida y destruida”.

Así las cosas, no parece que la Humanidad del futuro lo tenga nada fácil. Primero tendrá que escapar, dentro de unos 4.000 millones de años del gigante rojo en que se convertirá el Sol que calcinará al planeta Tierra. Segundo, en unos 10.000 millones de años, la escapada tendrá que ser aún más lejana; la destrucción será de la propia galaxia que se fusionará con otra mayor sembrando el caos cósmico del que difícilmente se podría escapar quedándonos aquí. Por último, el final anunciado, aunque para más largo tiempo, es el del propio universo que, por congelación o fuego, tiene los eones contados.

emilio silvera

¡Nos queda tanto por aprender!

Universos burbuja

Desde Ptolomeo con su modelo del universo de esferas cristalinas, hasta el más reciente modelo de los universos burbujas. Desde los modelos geocéntrico, estacionario, infinito, inflacionario… Siempre hemos tenido modelos de universos que nuestras mentes han creado según nos han ido dictando los siempre escasos conocimientos que del universo hemos tenido y, a medida que estos conocimientos fueron avanzando, el modelo se hizo mejor pero…,  no definitivo.

Precisamente por eso me choca ver y escuchar como pretendidos “expertos” en la materia, dicen que ellos conocen lo que es el Universo, o,  lo que pasó en los primeros tres minutos a partir del supuesto Big Bang. Hablan con desparpajo y “seguridad” de todo ello a la audiciencia que, no siempre en posesión del conocimiento requerido para ello, es receptora de las palabras que pretenden ser esa verdad que, en realidad, nadie ha tenido nunca. Lo cierto es que, se están refiriendo a que tienen un modelo del Universo temprano, y que este modelo encaja con los resultados que hasta el momento han obtenido mediante observaciones y diversas comprobaciones.

Está claro que el modelo de universo de los sumerios, babilónios y otros pueblos antiguos, era muy diferente al que ya nos dibujó Copérnico, Tycho Brahe o el mismo Einstein. Los modelos han ido evolucionando y, de la misma manera, el modelo que hoy tenemos y que denominamos Big Bang, será mejorado a medida que nuevos descubrimientos y nuevos conocimientos incrementen nuestro saber del mundo y, para ello, creamos esos modelos que nos ayudan para poder alcanzar ese saber que incansables perseguimos.

Los Modelos empíricos: Se sustentan en la identificación de  relaciones estadísticamente significativas entre ciertas variables que se asumen como esenciales y suficientes para modelar el comportamiento del sistema. Con tal motivo, debe disponerse previamente de una base de datos de tamaño adecuado. Pueden subdividirse en tres categorías diferentes:

 

De Caja Negra: Sólo se analizan los datos de entrada y de salida del modelo.

De Caja Gris: Se explican algunos detalles del conocimiento existente sobre el comportamiento del sistema.

De Caja Blanca: Se conocen y explican todos los detalles del comportamiento del Sistema.

 

ii. ESTOCÁSTICOS: Consisten en la generación de series de datos sintéticas a partir de las propiedades estadísticas de las poblaciones de datos existentes. Son muy útiles con objeto de generar secuencias de datos que alimenten a modelos empíricos o a los basados sobre leyes físicas, cuando tan sólo se dispone de información recogida durante periodos de observación breves.

iii. DE SOPORTE FÍSICO: Elaborados con ecuaciones matemáticas al objeto de describir los procesos involucrados en el modelo, teniendo en cuenta las leyes de conservación de masas y energía, etc.

iii. DIGITALES: Modelos estocásticos, de soporte físico, etc. Basados en el uso de ordenadores digitales capaces de procesar una gran cantidad de datos que desembocan en la recreación de Sistema que tratamos de descubrir [JJI].

 

Hoy podemos crear modelos para todo

 

No siempre los modelos científicos son una fiel imagen de la realidad. Los átomos y las moléculas que componen el aire que respiramos, por ejemplo,  se pueden describir en términos de un modelo en el que imaginamos cada partícula como si fuera una pequeña esfera perfectamente elástica, con todas las pequeñas esferas rebotando unas contra otras y contra las paredes del recipiente que las contiene.

Esa es la imagen mental, pero es sólo la mitad del modelo; lo que lo hace modelo científico es describir el modo como se mueven las esferas y rebotan unas contra otras mediante un grupo de leyes físicas, escritas en términos de ecuaciones matemáticas. En este caso, éstas son esencialmente las leyes del movimiento descubiertas por Newton hace más de trescientos años. Utilizando estas leyes matemáticas es posible predecir, por ejemplo, que le pasará a la presión ejercida por un gas si se aplasta hasta la mitad de su volumen inicial. Si hacemos el experimento, y, el resultado que se obtiene encaja con la predicción del modelo, este será un buen modelo.

Ley de Boyle

En la década de 1930, los físicos teóricos, en particular, Einstein, consideró la posibilidad de un modelo cíclico para el universo como una alternativa a la del Big Bang. Sin embargo, el trabajo de Richard Tolman reveló que estos primeros intentos fracasaron debido al problema que la entropía encumbra, que según la mecánica estadística, ésta aumenta debido a la segunda ley de la termodinámica. Esto implica que en sucesivos ciclos el universo crece más y más en cada ciclo. Y extrapolando hacia atrás en el tiempo, los ciclos antes de convertirse en el presente ciclo eran menores y más cortos, y en un punto hubo un ciclo iniciado por un Big Bang, no pudiendo eliminarlo de la teoría cíclica. Esta situación siguió siendo desconcertante para muchos, hasta las primeras décadas del siglo 21 cuando la recién descubierta energía oscura sembró una nueva esperanza para la cosmología cíclica.

Un nuevo modelo cíclico es el modelo basado en la cosmología de branas sobre la formación del universo, derivado del anterior modelo ecpirótico. Se propuso en 2001 por Paul Steinhardt de la Universidad de Princeton y Neil Turok de la Universidad de Cambridge. La teoría describe un universo emergiendo hacia la existencia no sólo una vez, sino en repetidas ocasiones a través del tiempo. La teoría podría explicar por qué una misteriosa forma repulsiva de energía conocida como la “constante cosmológica” está acelerando la expansión del universo, que es de varios órdenes de magnitud menor que la predicha por el modelo estándar del Big Bang.

 

El modelo Steinhardt–Turok

En este modelo cíclico basado en la cosmología de branas, rival del modelo inflacionario, dos láminas tridimensionales o 3-branas colisionan periódicamente. Según esta teoría la parte visible del universo de cuatro dimensiones representa una de esas branas, quedando la otra brana oculta a todas las fuerzas de la naturaleza excepto la gravedad. Cada ciclo consiste en que cada una de las branas dentro de un espacio-tiempo tetradimensional y separadas por una dimensión espacial muy corta y seis enrolladas chocan con cierta periodicidad creando condiciones parecidas a las del big bang del modelo inflacionario.

Según la teoría, después de millones de años, al aproximarse el final de cada ciclo la materia y la radiación se diluyen a casi cero debido a una expansión acelerada del universo alisando las dos branas pero con pequeños rizos o fluctuaciones cuánticas aún presentes que imprimirán en el próximo choque con no uniformidades que crearán grumos o cúmulos que generarán estrellas y galaxias.

Otro modelo: El Big Bounce ( gran rebote) es un modelo científico teórico relacionado con la formación del Universo conocido. Se deriva del modelo cíclico o Universo oscilante e interpreta el Big Bang como el primer evento cosmológico resultado del colapso de un universo anterior.

Según algunos teóricos de Universo oscilante, el Big Bang fue simplemente el comienzo de un período de expansión que siguió a un período de contracción. Desde este punto de vista, se podría hablar de un Big Crunch seguido por un Big Bang, o, más sencillamente, un Big Bounce. Esto sugiere que podría se estar viviendo en el primero de todos los universos, pero se tiene la misma probabilidad de estar viviendo en el universo 2 mil millones (o cualquier otro de una secuencia infinita de otros universos).

La idea principal detrás de la teoría cuántica del “gran rebote” es que, a medida que se acerca la densidad a lo infinito, el comportamiento de la espuma cuántica cambia. Todas las llamadas constantes físicas fundamentales, incluida la velocidad de la luz en el vacío, no eran tan constantes durante el Big Crunch, especialmente en el intervalo de estiramiento 10-43 segundos antes y después del punto de inflexión. (Una unidad de Tiempo de Planck es de aproximadamente 10-43 segundos.)

 

Si las constantes físicas fundamentales se determinaron en un quantum de forma mecánica durante el Big Crunch, entonces sus valores aparentemente inexplicables en este universo no serían tan sorprendentes, entendiendo que aquí un universo es lo que existe entre un Big Bang y su Big Crunch. Como podeis comprobar, por falta de modelos no podemos quejarnos. Sin embargo, todo esto nos lleva a plantear una pregunta: ¿Será alguno de estos modelos el que refleje la realidad?

La respuesta a la pregunta anterior es ¡NO! De hecho, todos los modelos científicos tienen aplicabilidad limitada. Ninguno de ellos es “la verdad”. Cuando un científico afirma, por ejemplo, que el núcleo de un átomo está compuesto por partículas denominadas protones y neutrones, lo que en realidad debería decir es que el núcleo de un átomo se comporta, bajo determinadas circunstancias, como si estuviera formado de protones y neutrones. Los mejores científicos toman el “como sí “, pero entienden que sus modelos son, efectivamente, sólo modelos; científicos menores a menudo olvidan esta diferencia crucial.

Los científicos menores, y muchos no-científicos, tienen otra idea equivocada. A menudo piensan que el papel de los científicos hoy en día es llevar a cabo experimentos que probarán la exactitud de sus modelos con una precisión cada vez mayor (hacia posiciones con más y más decimales). ¡En absoluto! La razón para llevar a cabo experimentos que demuestren predicciones previas no comprobadas es descubrir dónde fallan los modelos. Encontrar defectos en sus modelos es la esperanza abrigada por los mejores científicos, porque esos defectos destacarán los lugares donde necesitamos una nueva comprensión, con modelos mejores, para progresar.

El arquetípico ejemplo de esto es la gravedad. La ley de la gravedad de Isaac Newton se consideró la pieza clave de la física durante más de doscientos años, desde la década de 1680 hasta comienzos del siglo XX. Pero había unas pocas, aparentemente insignificantes, cosas que el modelo newtoniano no podía explicar o predecir, referente a la órbita del planeta mercurio y al modo como la luz se curva cuando pasa cerca del Sol. El modelo de gravedad de Albert Einstein, basado en su teoría general explica lo mismo que el modelo de Newton pero también explica esos detalles sutiles de órbitas planetarias y curvatura de la luz. En ese sentido, es un modelo mejor que el anterior, y hace predicciones correctas (en particular, sobre el Universo en general) que el viejo modelo no hace. Pero el modelo de Newton todavía es todo lo que se necesita si se está calculando el vuelo de una sonda espacial desde la Tierra a la Luna.

¿SABEMOS COMO COMENZÓ EL UNIVERSO?

Está ahora ampliamente aceptado -de manera provisional- que el Universo donde habitamos surgió a partir de una singularidad con densidad y energía “infinitas” que dio lugar a una bola de fuego caliente y densa a la que llamamos Big Bang. En los años veinte y treinta, los astrónomos descubrieron por primera vez que nuestra Galaxia es simplemente una isla de estrellas dispersa entre muchas galaxias similares, y que grupos de estas galaxias se están apartando las unas de las otras a medida que el espacio se expande. Esta idea del Universo en expansión fue realmente predicha por la teoría general de la relatividad de Einstein, terminada en 1916 pero no se tomó en serio hasta que los observadores hicieron sus descubrimientos. Cuando se tomó en serio los matemáticos descubrieron que las ecuaciones describían exactamente el tipo de expansión que observamos, con la implicación de que si las galaxias se van alejando con el tiempo entonces deberían haber estado más juntas en el pasado, y hace mucho tiempo toda la materia en el Universo debería estar acumulada en una densa bola de fuego.

Es la combinación de la teoría y de la observación la que hace que la idea del Big Bang sea tan convincente; en los años sesenta llegó una clara evidencia, con el descubrimiento de un siseo débil de ruído de radio, la radiación cósmica de fondo, que viene de todas las direcciones del espacio y se interpreta como la radiación restante del mismo Big-Bang.

El descubrimiento de la radiación cósmica de fondo (RCF) por Penzias y Wilson en 1965 fue definitivo para “probar” el origen caliente del universo. Sin embargo, después de estas mediciones aun permanecían algunas dudas por resolver. Si la radiación detectada por Penzias y Wilson proviene realmente del universo recién formado hace 14 mil millones de años, ésta debe mostrar ciertas características. Para poder afirmar con certeza que el origen de la RCF es cósmico se deben verificar las siguientes observaciones:

1. que su espectro sea característico de un cuerpo en equilibrio térmico
2. que su temperatura se haya enfriado por la expansión
3. que sea homogénea e isotrópica excepto por muy pequeñas anisotropías.

Como la expansión del Universo, la existencia de esta radiación de fondo fue predicha por la teoría antes de ser observada experimentalmente. A finales del siglo XX, la combinación de teoría y observaciones había establecido que el tiempo que ha pasado desde el Big Bang es de unos 14 mil millones de años, y que existen cientos de miles de millones de galaxias como la nuestra dispersas de un extremo al otro del Universo en expansión.

La pregunta a la que se están enfrentando ahora los cosmólogos es ¿cómo empezó el mismo Big Bang?

El punto de partida para enfrentarnos a esta pregunta es el modelo estándar propio de los cosmólogos, que combina todo lo que han aprendido de las observaciones del universo en expansión con el entendimiento teórico del espacio y el tiempo incorporado a la teoría general de Einstein. El establecimiento de este modelo se ha visto favorecido por el hecho de que cuanto más lejos miramos del Universo, más tiempo atrás vemos. Debido a que la luz viaja a una velocidad finita, cuando miramos galaxias alejadas millones de años luz, la vemos como si estuvieran presentes como eran millones de años antes, cuando salió la luz que llega ahora a nuestros telescopios.

Con telescopios potentes, los astrónomos pueden ver qué aspecto tenía el Universo cuando era más joven (y la radiación cósmica de fondo nos permite “ver”-con radiotelescopios- la última etapa de la bola de fuego que fue el Big bang).

Lo más atrás que hemos visto, el origen de la radiación de fondo corresponde a un tiempo unos pocos cientos de miles de años después del momento del Big Bang, cuando todo el Universo estaba lleno de gas caliente (conocido técnicamente como plasma) a aproximadamente la misma temperatura que la que tiene la superficie del Sol hoy en día, unos pocos miles de grados Celsius. En ese momento, lo que ahora es el Universo visible entero era solo una milésima parte de su tamaño actual y no había objetos individuales en la escala de las estrellas o galaxias en el remolino de material caliente.

http://3.bp.blogspot.com/-zFmO6Ndn89w/TcHR8VacnTI/AAAAAAAAAcU/-GYTbZm5hf0/s1600/sloan-big-map--644x362.jpg

Moviéndonos hacia delante en el tiempo, las irregularidades observadas en la radiación de fondo son justamente del tamaño y estructura correctos que podrían explicar el origen de las galaxias y de los grupos de galaxias, pudieran ser las semillas a partir de las cuáles  creció la estructura que vemos en el Universo hoy.

Yendo hacia atrás en el tiempo, la estructura de las pequeñas irregularidades vistas en la radiación de fondo nos habla sobre el tipo de irregularidades que había en el Universo cuando era incluso más joven, justo hasta ese momento atrás en que la teoría general por sí misma se rompe y, no nos deja pasar más allá del Tiempo de Planck.

Lo primero, y más importante, que hay que decir sobre estas irregularidades en la radiación de fondo es que son diminutas. Son tan pequeñas que al principio era imposible medirlas, y la radiación parecía que viniera perfectamente uniforme desde todas las direcciones en el espacio (isotropía). Si la radiación fuera perfectamente uniforme, todo el modelo estándar del Universo se desbarataría, ya que si no hubiera habido irregularidades en la bola de fuego del Big Bang no habría habido semillas desde donde las galaxias pudieran crecer, y nosotros al no haberse formado las estrellas y fabricado en sus núcleos los materiales complejos de los que estamos hechos, no estaríamos aquí. El hecho de que los científicos estén tratando de resolver estas preguntas han convencido a los astrónomos de que debería haber irregularidades en la radiación de fondo, sólo había que desarrollar instrumentos sensibles para medirlas.

En este sentido podríamos citar el satélite de la NASA COBE  que fue capaz de hacer medidas suficientemente sensibles para demostrar que había efectivamente minúsculas ondulaciones en la radiación de fondo. Las dos preguntas clave derivadas del descubrimiento son: ¿por qué la radiación de fondo es casi lisa?, ¿Qué crea las ondulaciones?

La primera pregunta es más profunda de lo que se pueda pensar, porque incluso hoy, 14 mil millones de años después, el Universo es todavía casi liso. Esto no es obvio si contrastamos la luminosidad de una galaxia como nuestra Vía Láctea con la oscuridad del espacio entre las galaxias pero enseguida se hace evidente a mayores escalas. El Universo no es exactamente uniforme, pero incluso en términos de distribución de las galaxias es uniforme en cierto sentido. Si tomamos una fotografía de las galaxias vistas en una pequeña zona del cielo se parecerá mucho a otra fotografía de una zona del mismo tamaño de otra parte del cielo. La radiación de fondo es incluso más uniforme, y parece exactamente la misma desde todos los puntos del espacio dentro de una fracción del 1 por ciento. La profundidad de esta observación descansa en el hecho de que no ha pasado el tiempo suficiente desde el Big Bang para que todas las diferentes partes del Universo interactúen unas con otras y deje de ser liso.

Esta homogeneidad está relacionada con otra característica extraña del Universo denominada subplanitud. La teoría general de la relatividad nos dice que el espacio (en sentido estricto, el espacio-tiempo) se puede curvar y deformar por la presencia de materia. Localmente, cerca de un objeto como el Sol o la Tierra, esta deformación del espacio-tiempo produce el efecto que llamamos gravedad. Cósmicamente, en el espacio entre las estrellas y las galaxias el efecto combinado de toda la materia en el universo puede producir una curva gradual en el espacio en uno de los dos sentidos.

Aquí tendríamos que continuar hablando de la densidad crítica y de la clase de universo que tendríamos en función de la cantidad de materia que este contenga. Sin embargo, dejaremos ese punto del universo cerrado, abierto o plano, ya que, en uno de los comentarios muy recientes de esta colaboración ya quedaron explicados de manera suficiente.

 

El explorador Planck fue una misión propuesta por la ESA que se puso en órbita en el año 2007 y operando en las bandas infrarroja y submilimétrica, tomó imágenes de las anisotropías de la radiación cósmica de fondo en todo el cielo con resolución y sensibilidad excepcionales.

Estudios cada vez más sofisticados de la radiación de fondo, que culminaron con las observaciones hechas por el satélite WAP de la NASA a principios de éste siglo XXI y del Planck Explorer de ESA un poco más tarde, mostraron que el Universo efectivamente está indistinguiblemente cerca de la plenitud, de modo que su densidad debería estar indistinguiblemente cerca de la Densidad crítica. Esto dio lugar al rompecabezas  de donde estaba la masa “desaparecida” (esa que llamamos materia oscura que, nunca se ha visto, ni produce radiación, ni sabemos como se pudo formar, de qué clase de partículas está conformada -si es que son partículas- y, un sin fin de interrogantes más que, de momento, no sabemos contestar).

En realidad, la teoría de la inflación es todavía un trabajo en progreso, y, como en el caso de la GUT, existen diferentes variaciones o modelos sobre el tema. Lo que está claro de todo esto es que, no se puede negar, ni el esfuerzo realizado, ni el éxito alcanzado que, sin ser aún lo que se desea, sí es un paso importante en el conocimiento del Cosmos. Ahora sabemos de él muchísimo más que se sabía en los tiempos de Galileo, y, tanto la técnica, como las matemáticas y la física, han desarrollado la Astronomía y la Astrofísica, hasta unos niveles encomiables, teniendo en cuenta que estamos estudiando una cosa muy, muy grande y cuyos objetos están muy, muy lejos.

Cúmulo Abell

     Estas galaxias están a más de 13.000 Millones de años-luz de nosotros

Sin embargo, podemos obtener imágenes de galaxias lejanas y de nebulosas que se encuentran a miles y miles de millones de años-luz de la Tierra y, mediante técnicas del estudio del espectro, saber, de que materiales están formados esos objetos cosmológicos que pueblan nuestro universo en regiones tan remotas que nuestras mentes, no pueden asimilar.

Es aún muy grande el espacio oscuro que tenemos que alumbrar para conocer en plenitud nuestro vasto Universo, son muchas las zonas que están en la penumbra, y, debemos y tenemos la obligación de continuar profundizando en el saber del Universo que nos acoge.

Yo, que me considero un simple aficionado -eso sí-, muy enamorado del Universo y apasionado de todas las maravillas que encierra y que producen en mi esa fascinación que me inunda de asombro y, también, de maravilla.  A veces pienso que todo el vasto Universo podría haber surgido de una fluctuación cuántica del “vacío”, ese lugar misterioso que resulta estar lleno a rebosar y que, gracias a la combinación de inflación y a una curiosa propiedad de la gravedad, dio lugar a la creación de un nuevo universo de los muchos que podrían ser.

Esta curiosa propiedad de la gravedad es que guarda energía negativa. Cuando algo (¡cualquier cosa!) cae hacia debajo de un campo gravitacional (como el agua que se precipita desde la montaña) la energía es liberada………Pero eso, será otra historia que ya contaremos. Ahora, para no cerrar en falso el comentario, diré que, no existe ningún límite, en principio, en cuanta masa (en sentido estricto masa-energía, teniendo en mente E=mc2) puede tener una fluctuación cuántica, aunque cuanto más masiva sea una fluctuación, menos probable es que suceda.

Las ondas de luz normalmente tienen una densidad de energía positiva o cero en diferentes puntos del espacio (arriba). Pero en un estado comprimido, la densidad de la energía, en un instante determinado en el tiempo, puede llegar a ser negativa en algunos lugares (abajo). Para compensar esto, el pico de densidad positiva debe aumentar.

                            ¡Son tántas, las cosas que no sabemos!

 

El cosmólogo americano Ed Tyron señaló que en principio una fluctuación cuántica que contiene la masa-energía de todo el Universo visible podría salir de la “nada”, y que aunque la masa-energía de tal fluctuación sería enorme, en las circunstancias correctas la energía gravitacional negativa del campo gravitacional asociado a toda esta masa equilibraría perfectamente esto, de modo que la energía total de la fluctuación sería cero.

La implicación, naturalmente, es que nuestro Universo nació (o brotó) de este modo desde el espacio-tiempo de otro universo, y que no hubo principio y no habrá final. Sólo un mar infinito de universos burbujas interconectados como han propùestos algunos.

emilio silvera

¡La curiosidad! que está con nosotros

hubble2

Me ha venido a la memoria escenas y hechos que, en la última charla que pude dar en un Centro Educativo,  en el apartado de Ciencia, para chavales de 2º de Bachillerato, comencé la sesión ilustrándola con la Imagen de arriba, de la que di una breve explicación antes de entrar en materia que, en realidad era: Nacimiento, Vida y Muerte de las estrellas y, de lo que hacían durante eseos largos períodos de tiempo y, en qué se convertían al final de sus vidas como estrellas.

El caso fue que, comencé con las explicaciones y, de entre el auditorio de jóvenes llenos de energía y revoltosos, algunos, no prestaban atención y, además, con sus bromas y risas, no dejaban que los demás, se pudieran interesar en lo que allí se trataba.

Aquella actitud de algunos, me obligó a parar la esposición y, mirándo seriamente a los alborotadores, les dije: Chicos, si el tema no os interesa, y queréis salir de aquí siendo un poco más “burros”, sois libres de hacerlo. Sin embargo, os ruego que, si finalmente decidías seguir con nosotros, y al final ser un poco mñás “sabios”, dejéis de alborotar.

Como ya son “hombrecitos y mujeres”, la repimenda tuvo su efecto y, a partir de aquel momento, todos estuvieron atentos a mis palabras con las que fui desgranan, despacio y con palabras sencillas, lo que era una explosión de supernova y cómo dejaba regada una amplia región del espacio interestelar por una hermosa e inmensa nebulosa de cuyos materiales, vuelven a nacer nuevas estrellas y nuevos mundos.

Imagen de la formación de una estrella tomada por un nuevo telescopio. (Foto: ESA).

Apoyaba mis palabras con imágenes  como la de arriba.  La fotografía combina diferentes radiaciones, como rayos X, infrarojos o luz visible, y genera una amalgama de colores que aportan información importante para entender cómo llega una estrella a ser una estrella. Esta imagen ofrece una interesante mirada hacia el interior de la región activa de estrellas en ciernes llamada NGC 346. Los científicos responsables del telescopio aseguran que revela información nueva sobre cómo se forman las estrellas en el Universo.

La NASA publicó un video (1/09/2011) donde se aprecia el proceso de nacimiento estelar. Con grandes chorros de gas incandescente nacen las estrellas a millones de años luz, algo que ahora está al alcance del ojo humano a través de un vídeo reconstruido con imágenes fijas tomadas por el telescopio Hubble.  El vídeo, publicado en la página web de la agencia espacial estadounidense (NASA), ofrecía nuevos detalles sobre el proceso de nacimiento estelar, en el que se pueden apreciar los chorros de gas que expulsan las estrellas jóvenes con un detalle hasta ahora nunca visto.

A medida que las explicaciones avanzaban, pude notar como el interés de los chicos crecía. Ya no bromeaba nadie, la sala estaba en silencio y todos, sin excepción, se veían interesados e incluso, algunos, tenían la boca abierta por asombro. Allí, lo que al principio era una simple charla para alumnos, se fue convirtiendo en un auditoriun donde, profesores y alumnos de otras clases llegaban y se unián a los ya presentes.

Les pude explicar con todo detalle y de la manera más sencilla posible, como se formaban los elementos en las estrellas a partir del Hidrogeno, el elemento más sencillo de la Naturaleza.

Les expliqué el proceso protón-protón que convertía Hidrógeno en Helio y el proceso triple Alfa que convertía Helio en Carbono, el material químicamente más idóneo para la vida -al menos aquí en la Tierra- y, se hizo un largo recorrido por la transmutación que se producía en  todos los elementos, a medida que transcurría el tiempo y la estrella evolucionaba.

Pude darles una buena noción de las clases de estrellas que existen y de que, no todas tienen las mismas masas y que, como consecuencia de ello, cada una de esas estrellas, viven más o menos tiempo y que, cuando al final mueren, lo hacen de muy diferentes maneras. Ya que, estrellas medianas como nuestro Sol, terminan creando una Nebulosa planetaria al convertirse en Gigante roja y, terminan sus días como enanas blancas de una gran densidad. Les expliqué el proceso que hacían hasta llegar a tal estado y los parámetros que, como ekl principio de exclusión de Pauli, estaban allí presentes. De la misma manera, les expliqué que, estrellas más masivas terminaban como estrellas de neutrones y más masivas aún, como agujeros negros.

El recorrido fue algo largo (más de lo esperado), ya que, vista la gran atención que todos ponían en las explicaciones y en las imágenes que se ivan poniendo en cada fasa del proceso explicativo, procuraba que el tema tratado lo fuera en profundidad y amplitud y, de esa manera, la cosa resultó, además de más amena, mucho más completa y, sobre todo, comprensible.

Cuando al final di la charla por finalizada, pregunté si alguien quería alguna explicación sobre algún aspecxto delo que habíamos tratado, y, las manos que se levantaban presagiaban un largo, muy largo debate. Y, así fue. Los jóvenes se interesaban por todo y, de entre todo lo explicado, las cosas que más llamaron su atención fueron, por ejemplo:

Que nuestro Sol, cada segundo, pueda fusionar 4.654000 toneladas de Hidrógeno en 4.650.000 toneladas de Helio. Y, un observador inquisitivo, me preguntaba: ¿dónde están las 4.000 Tn que se han perdido? Bueno, le expliqé que habían sido lanzadas al espacio interestelar en forma de luz y de calor y, una pequeña fracción, llegaba a la Tierra para permitir la fotosíntesis y la vida.

Otra de las cuestiones que les llamó más la atención fue, cómo era posible que estrellas supergigantes, pudieran tener una vida más corta cuando tenían a su disposición mucho más material. Y, cuando les expliqué que, esas estrellas, no consumen sino que devoran literalmente el material nuclaer de fusión, comprendieron el por qué de sus cortas vidas.

Y, preguntaban cómo no todas las estrellas tenían el mismo colo, amarillas como nuestro Sol. La exlicación, como sabemos, está en el hecho de que no todas están formadas por el mismo material: Hay estrellas de Carbono, otras son de Oxígeno, Litio, manganeso…, la diversidad es enorme.

Mostraron mucha curiosidad y más intewrés aún, al saber -no todos conocían tal hecho- que, los elementos para hacer posible, la bio-química de la vida, se fabrica en las estrellas, es allí, en sus hornos nucleares donde se producen los elementos que conforma la materia del Universo, su diversidad que, bajo ciertas condiciones y, en los mundos adecuados situados en las zonas habitables de sus estrellas, pueden hacer surgir formas de vida que, a veces, llegan incluso a ser conscientes, como ha pasado aquí, en la Tierra.

G292.0+1.8

Los remanentes de supernovas y de cómo en esas inmensas explosiones se producían oro y platino, también fue uno de los temas que llamó la atención del personal. Todos querían hablar al mismo tiempo y todos -era un auténtico gozo- tenían preguntas que plantear. Al final, el tiempo pasaba sin sentir y tuve que dar por finalizado el evento que, al contrario de lo que parecía al principio, fue todo un exito, sobre todo, al comprobar que aquellos jóvenes al terminar la charla y el coloquio, eran un poco “más sabios” que antes de empezar.

Claro que, no siempre las cosas salen tan bien paradas. Recuerdo aquel Asilo de Ancianos al que hace tiempo fuí a dar una charla de astronomía y, antes de terminar, estaban todos, prácticamewnte dormidos. La curiosidad y el interés, les había abandonado y, ese fue un día triste para mí.

emilio silvera

El Universo: siempre misterioso

     

Los cosmólogos llaman Omega (Ω) a la cantidad de materia que existe en el Universo y, Omega Negro referido a esa materia “invisible” que algunas llaman oscura pero que, en realidad, nadie sabe lo que es ni de qué puede estar formada y, llevando la cuestión al límite, si ni siquiera existe y, los efectos observados de expansión del Universo, pueden tener su fuente en otro lugar que aún no hemos sabido comprender.

”Vermeer-astronom”
”Vermmer-geometra”
Dos cuadros de Vermeer, el astrónomo y el geómetra, pintados el mismo año. El astrónomo siempre fue un geómetra, pero las conexiones se volvieron todavía más importantes en el siglo XX, donde se descubrió que hasta la cosmología era asunto de geometría.
© Museo del Louvre, Steadelsches Kunstinstitut, respectivamente.

Hemos podido saber que el Universo es todo lo que existe, desde el más insignificante grano de arena de la más lejana playa, hasta la más inmensa galaxia perdida en los confines del esapacio-tiempo. Esa materia interactúa con las cuatro fuerzas fundamentales de la Naturaleza y, según hemos podido llegar a comprender, está compuesta por átomos que se juntan para formar moléculas y éstas, a su vez, lo hacen para formar cuerpos grandes o pequeños pero que, finalmente y sin excepción, todos están compuestos por esos átomos que formados por partículas infinitesimales, son las que conforman el mundo material que nos rodea.

A nivel cercano o local, el mundo es irregular y diverso. Si miramos para esa región nos parecerá distinta de aquella otra. Sin embargo, el Universo contemplado en una perspectiva muy amplia, resulta ser muy homogéneo y todo está distribuido de manera uniforme, de manera tal que, tal como hacen los átomos, que se juntan para formar moléculas y estas cuerpos, así se comportan las galaxias que se juntan para formar cúmulos y éstos, a su vez, supercúmulos que son las grantes estructuras del Universo que, se hallan inmersas en “infinitos” espacios vacíos. Habiendo podido observar todo eso, los cosmólogos y los astrónomos han contabilidado esa materia percibida y han podido constatar que, el Universo, tiene una densidad inferior (en cerca del 1%) a la Densidad Crítica que resulta ser, algo mayor que la que se observa.

En mi trabajo expuesto aquí en otra ocasión, insertaba ésta imagen que venía a significar  la constante de Hubble en función de la Densidad Crítica. Y, lo cierto es que, no acabamos de obtener una información fiable de la materia existente en el Universo, ya que, según parece, puede que exista una clase de materia que no podemos percibir y que, en cambio, se deja sentir en algunos aspectos que inciden en el comportamiento de Universo mismo que, como hemos llegado a comprender, es complejo y para nosotros, en algunos casos “infinito”.

Algunos números que definen nuestro Universo:

  • El número de fotones por protón
  • La razón entre densidades de Materia Oscura y Luminosa.
  • La Anisotropía de la Expansión.
  • La falta de homogeneidad del Universo.
  • La Constante Cosmológica.
  • La desviación de la expansión respecto al valor crítico.
  • Fluctuaciones de vacío y sus consecuencias.
  • ¿Otras Dimensiones?

”distribución_materia_oscura_y_materia_bariónica”

En las últimas medidas realizadas, la  Densidad crítica que es la densidad necesaria para que la curvatura del universo sea cero, ha dado el resultado siguiente:  r0 = 3H02/8pG = 1.879 h2 10-29 g/cm3, que corresponde a una densidad tan baja como la de la masa de 2 a 3 átomos de hidrógeno por metro cúbico (siempre, por supuesto obviando la incertidumbre en la constante de Hubble).

Hay una teoría que nos dice que, la Densidad crítica está referida a la densidad media de materia requerida para que la Fuerza de Gravedad detenga la expansión del nuestro Universo. Así que si la densidad es baja se expandirá para siempre, mientras que una densidad muy alta colapsará finalmente. Si tiene exactamente la densidad crítica ideal, de alrededor de 10-29 g/cm3, es descrito por el modelo de Einstein-de Sitter, que se encuentra en la línea divisoria de estos dos extremos. La densidad media de materia que puede ser observada directamente en nuestro Universono hacen que las cuentas cuadren y, se necesitaría alguna clase de materia que no podemos detectar, para que todo lo que ocurre tenga una explicación plausible.

Claro que el hecho de que la materia luminosa medida esté tan cercana al valor crítico pero, que no lo sea exactamente, puede simplemente deberse a un accidente cósmico; las cosas simplemente “resultan” de ese modo. Me cuesta mucho aceptar una explicación (y supongo que a otros también), que venga a decirnos que una masa perdida que se llama “oscura” es la que completa el cuadro. Es tentador decir que el Universo tiene, en realidad, la masa crítica, pero que de algún modo no conseguimos verla toda.

Como resultado de esta suposición, los astrónomos comenzaron a hablar de la “masa perdida” con lo que aludían a la materia que habría llenado la diferencia entre densidades observadas y crítica. Tales teorías de “masa perdida”, “invisible” o, finalmente “oscura”, nunca me ha gustado, toda vez que, hablamos y hablamos de ella, damos por supuesta su existencia sin haberla visto ni saber, exactamente qué es, y, en ese plano, parece como si la Ciencia se pasara al ámbito religioso, la fe de creer en lo que no podemos ver ni tocar y, la Ciencia, amigos míos, es otra cosa.

Comparación entre un modelo de expansión desacelerada (arriba) y uno en expansión acelerada (abajo). La esfera de referencia es proporcional al factor de escala. El universo observable aumenta proporcionalmente al tiempo. En un universo acelerado el universo observable aumenta más rápidamente que el factor de escala con lo que cada vez podemos ver mayor parte del universo. En cambio, en un universo en expansión acelerada (abajo), la escala aumenta de manera exponencial mientras el universo observable aumenta de la misma manera que en el caso anterior. La cantidad de objetos que podemos ver disminuye con el tiempo y el observador termina por quedar aislado del resto del universo.

          Conforme a lo antes dicho, la densidad media de materia está referida al hecho de distribuir de manera uniforme toda la materia contenida en las galaxias a lo largo de todo el Universo. Aunque las estrellas y los planetas son más densos que el agua (alrededor de 1 g/cm3), la densidad media cosmológica es extremadamente baja, como se dijo antes, unos 10-29 g/cm3, o 10-5 átomos/cm, ya que el Universo está formado casi exclusivamente de espacios vacíos, virtualmente vacíos, entre las Galaxias. La densidad media es la que determinará si el Universo se expandirá o no para siempre.

          En presencia de grandes masas de materia, tales como planetas, estrellas y Galaxias, está presente el fenómeno descrito por Einstein en su teoría de la relatividad general, la curvatura del espacio-tiempo, eso que conocemos como Gravedad, una fuerza de atracción que actúa entre todos los cuerpos y cuya intensidad depende de las masas y de las distancias que los separan; la fuerza gravitacional disminuye con el cuadrado. La Gravitación es la más débil de las cuatro fuerzas fundamentales de la naturaleza. Isaac Newton formuló las leyes de la atracción gravitacional y mostró que un cuerpo se comporta gravitacionalmente como si toda su masa estuviera concentrada en su centro de Gravedad. Así, pues, la fuerza gravitacional actúa a lo largo de la línea que une los centros de Gravedad de las dos masas (como la Tierra y la Luna, por ejemplo).

          En la teoría de la relatividad general, la gravitación se interpreta como una distorsión del espacio que se forma alrededor de la masa que provoca dicha distorsión, cuya importancia iría en función de la importancia de la masa que distorsiona el espacio que, en el caso de estrellas con gran volumen y densidad, tendrán una importancia considerable, igualmente, la fuerza de Gravedad de planetas, satélites y grandes objetos cosmológicos, es importante.

          Esta fuerza es la responsable de tener cohexionado a todo el Universo, de hacer posible que existan las Galaxias, los sistemas solares y que, nosotros mismos, tengamos bien asentados los pies a la superficie de nuestro planeta, la Tierra, cuya gravedad, tira de nosotros para que así sea.

          No obstante, a escala atómica la fuerza gravitacional resulta ser unos 1040 veces más débil que la fuerza de atracción electromagnética, muy potente en el ámbito de la mecánica cuántica donde las masas de las partículas son tan enormemente pequeñas que la gravedad es despreciable. Así que la relatividad general es la Ley que rige en los ámbitos de lo muy grande y, la mecánica cuántica, lo hace en los ámbitos de lo muy pequeño.

          La Gravitación cuántica es la teoría en la que las interacciones gravitacionales entre los cuerpos son descritas por el intercambio de partículas elementales hipotéticas denominadas gravitones. El Gravitón es el cuanto del campo gravitacional. Los gravitones no han sido observados, aunque se presume que existen por analogía a los fotones de luz.

          La teoría cuántica es un ejemplo de talento que debemos al Físico alemán Max Planck (1.858-1.947) que, en el año 1.900 para explicar la emisión de radiación de cuerpo negro, de cuerpos calientes, dijo que la energía se emite en cuantos, cada uno de los cuales tiene una energía igual a hv, donde h es la constante de Planck (E=hv o ħ=h/2л) y v es la frecuencia de la radiación.

Esta teoría condujo a la teoría moderna de la interacción entre materia y radiación conocida como mecánica cuántica, que generaliza y reemplaza a la mecánica clásica y a la teoría electromagnética de Maxwell. En la teoría cuántica no relativista se supone que las partículas no son creadas ni destruidas, que se mueven despacio con respecto a la velocidad de la luz y que tienen una masa que no cambia con la velocidad. Estas suposiciones se aplican a los fenómenos atómicos y moleculares y a algunos aspectos de la física nuclear. La teoría cuántica relativista se aplica a partículas que viajan cerca de la velocidad de la luz, como por ejemplo, el fotón.

          Por haberlo mencionado antes me veo obligado a explicar brevemente el significado de “cuerpo negro”. Que está referido a un cuerpo hipotético que absorbe toda la radiación que incide sobre él. Tiene, por tanto, una absortancia y una emisividad de 1. Mientras que un auténtico cuerpo negro es un concepto imaginario, un pequeño agujero en la pared de un recinto a temperatura uniforme es la mejor aproximación que se puede tener de él en la práctica.

          La radiación de cuerpo negro es la radiación electromagnética emitida por un cuerpo negro. Se extiende sobre todo el rango de longitudes de onda y la distribución de energía sobre este rango tiene una forma característica con un máximo en una cierta longitud de onda, desplazándose a longitudes de onda más cortas al aumento de temperaturas (ley de desplazamiento de Wien).

Un cuerpo negro absorbe todas las frecuencias y emite también todas las frecuencias de radiación

Finalmente, resulta que todo lo grande está hecho de cosas pequeñas (las galaxias, las estrellas y los mundos -nosotros también-, somos átomos que, a su vez, están conformados por Quarks y Leptones, partículas elementales de ínfima presencia y de “infinita” importancia) y, también todo, lo que en el Universo existe, está sometido a sus leyes y constantes que hacen posible que nuestro univewrso sea tal como lo podemos observar y, también, hace posible que existan observadores que, como nosotros mismos, nos interesamos por estos hechos para poderlos contar.

Todo esto ha podido ser comprendido con el paso del tiempo y a medida que se sumaban los descubrimientos y los pensamientos de unos y otros, y, por ejemplo, Einstein también concluyó que si un cuerpo pierde una energía L, su masa disminuye en L/c2. Einstein generalizó esta conclusión al importante postulado de que la masa de un cuerpo es una medida de su contenido en energía, de acuerdo con la ecuación m=E/c2 ( o la más popular E=mc2).

Otras de las conclusiones de la teoría de Einstein en su modelo especial, está en el hecho de que para quien viaje a velocidades cercanas a c (la velocidad de la luz en el vacío), el tiempo transcurrirá más lento. Dicha afirmación también ha sido experimentalmente comprobada.

Todos estos conceptos, por nuevos y revolucionarios, no fueron aceptados por las buenas y en un primer momento, algunos físicos no estaban preparados para comprender cambios tan radicales que barrían de un plumazo, conceptos largamente arraigados.

 

http://4.bp.blogspot.com/_zBAdWxgEeX0/R87vhcBGPII/AAAAAAAACI4/MCE-Wi6d2v0/s320/galatomo.jpg

 

Y, de la misma manera, ahora mismo la Ciencia está necesitada de nuevos paradigmas, nuevas teorías que nos traigan esas nuevas reglas con las que poder vislumbrar nuevos caminos que vayan mucho más allá de lo que lo ha hecho la relatividad y la mecánica cuántica. Ha pasado un siglo y seguimos anclados en esas dos teorías que, habiendo dado un inmenso resultado y aportado unos grandes beneficios para el conocimiento que la Humanidad tiene del “mundo” que le rodea, no son, sin embargo suficientes para hacer frente a ese futuro que se nos viene encima, inexorable como el tiempo mismo y que, nos pondrá ante dilemas que, de no remediarlo alguien, no sabremos resolver.

De hecho, no sabemos ni explicar esos fenómenos que están relacionados con los agujeros negros y que, a ciencia cierta sabemos que, inciden en el comportamiento de algunas estrellas y en la propia materia y también, en el espacio-tiempo circundante debido a la inmensa fuerza de gravedad que genera y, a eso que llamamos singularidad y que, en realidad, no podemos dar una explicación…, muy clara.

Creemos que sabemos y, ¡de pronto! hacemos el descubrimiento de que, la atmósfera de Marte, está sobresaturada de vapor de agua. Así lo determina un nuevo análisis de los datos enviados por el espectrómetro SPICAM a bordo de la nave Mars Express de ESA. Y, tal descubrimiento, después de tanto tiempo estudiando aquel planeta y tántos ingenios como lo han visitado, ha sorprendido a propios y extraños. Las implicaciones pueden ser grandes.

 

Ahora resulta, según un artículo publicado en The Physics Ar Xiu Blog, que la forma en que la gravedad afecta a las partículas cuánticas demuestra que no puede ser un fenómeno emergente. Una de las ideas más interesantes de la física moderna es que la gravedad no es una fuerza tradicional, al igual que las fuerzas electromagnéticas o nucleares. Por el contrario, es un fenómeno emergente que simplemente tiene el aspecto de una fuerza tradicional.

Mientras tanto, nuestra vecina Andrómeda,  a una velocidad considerable, se nos acerca imparable y, dentro de unos 3.000 millones de años, tendrá lugar el encuentro con la Vía Láctea. Sí, ya se que no estaremos aquí y que eso queda lejos. Sin embargo, nuestra obligación es saber y descubrir para dejar abierto todos los caminos posibles a los que vengan detrás -si para entonces, nuestra especie aún pervive-

Lo cierto es que, después del paseo que nos hemos dado por algunos aspectos que están implicados en nuestro conocimiento del Universo, podemos concluir que, no sabemos tanto como creemos que sabemos.

emilio silvera