Archive for Energía = Materia

Sí, necesitamos nuevas formas de energías

 

Fusión de Deuterio con Tritio produciendo helio-4 liberando un neutrón, y generando 17,59 MeV de energía, cantidad de masa apropiada convertida de la energía cinética de los productos, de acuerdo con E = Δm c2. En física nuclear , la fusión nuclear es el proceso por el cual varios núcleos atómicos de carga similar se unen para formar un núcleo más pesado. Se acompaña de la liberación o absorción de una cantidad enorme de energía, que permite a la materia entrar en un plasmático.

 

El futuro que nos espera será muy distinto al presente que ahora podemos vivir, y, la vida cotidiana en las Sociedades venidaderas, serán también distintas debidos a los cambios que se avecinan en campos de la Ciencia como la Física y la Tecnología, Computación, Materiales y, sobre todo, nuevas que todo lo cambiaran.

Iter, el reactor de la fusión nuclear

Por primera vez se aspira a que un reactor de fusión produzca energía.

Este proceso puede liberar enormes cantidades de energía. Sin embargo el proceso no es tan simple, requiere de una enorme energía de activación a una temperatura del orden de los millones de grados. De haber esta energía, surge otra dificultad: la estructura material de un reactor puede fundirse a tan elevada temperatura.

Dentro de unos treinta años estaremos en el camino correcto, la energía de fusión sería una realidad que estará en plena expansión de un comenzar floreciente. Sin residuos nocivos peligrosos como las radiaciones de la fisión nuclear, la fusión, nos dará energía limpia y barata en base a una materia prima muy abundante en el planeta Tierra.

El planeta Agua (Tierra) nos porporciona la matereia prima necesaria

Nuestro Sol fusiona Hidrogeno en Helio a razón de 4.654.000 toneladas por segundo. De esta enorme cantidad de Hidrógeno, 4.650.000 toneladas se convierten en Helio. Las 4.000 toneladas restantes, son lanzadas al espacio en forma de luz y calor, energía termonuclear de la que, una parte, llega al planeta Tierra y hace posible la vida.

Resulta pues que, el combustible nuclear de las estrellas es el Hidrógeno que mediante su fusión hace posible que genere tal enormidad de energía. Así lleva el Sol unos 4.500 millones de años, y se espera que, al menos durante un período similar, nos esté regalando su luz y su calor.

No debemos confundir la Fisión con la Fusión, la primera es la que se emplea en las Centrales nucleares para producir energía y, ya sabemos todo lo peligrosa que resulta (Japón, en sus propias carnes ha sufrido y sufre sus consecuencias), las radiaciones del Uranio y del Plutonio son fatales para la vida. Por el contrario, la fusión es limpia pero…de momento, inalcanzable.

Pero ¿tenemos Hidrógeno en el planeta Tierra para tal empresa? La verdad es que sí. La fuente de suministro de Hidrógeno con la que podemos contar, es prácticamente inagotable… ¡El agua de los mares y de los Océanos!

Todos sabemos que el hidrógeno es el elemento más ligero y abundante del Universo. Está presente en el agua y en todos los compuestos orgánicos. Químicamente, el hidrógeno reacciona con la mayoría de los elementos. Fue descubierto por Henry Cavendisch en 1.776. El hidrógeno se utiliza en muchos procesos industriales, como la reducción de óxidos minerales el refinado del petróleo, la producción, de hidrocarburos a partir de carbón y la hidrogenación de los aceites vegetales y, actualmente, es un candidato muy firme para su uso potencial en la economía de los combustibles de hidrógeno en la que se usan fuentes primarias distintas a las energías derivadas de combustibles fósiles (por ejemplo, energía nuclear, solar o geotérmica) para producir electricidad, que se emplea en la electrolisis del agua. El hidrógeno formado se almacena como hidrógeno líquido o como hidruros de metal.

Bueno tanta palabrería y explicaciones solo tiene por objeto hacer notar la enorme importancia del Hidrógeno. Es la materia prima del Universo, sin él no habría estrellas, no existiría el agua y, lógicamente, tampoco nosotros podríamos estar aquí sin hidrógeno.

 

Si finalmente somos capaces de conseguir energía a través de la fusión nuclear, la Humanidad habrá dado un paso gigante hacia su futuro. Pero sigamos con las explicaciones. Cuándo dos moléculas de Hidrógeno se junta con una de Oxígeno (H2O), tenemos el preciado líquido que llamamos agua y sin el cual la vida no sería posible.

Así las cosas, parece lógico pensar que, conforme a todo lo antes dicho, los seres humanos, deberán fijarse en los procesos naturales (en este caso el Sol y su producción de energía), y, teniendo como tiene a su disposición la materia prima (el Hidrógeno de los océanos), procurar investigar y construir las máquinas que sean necesarias para conseguir la fusión, la energía del Sol.

Esa empresa está ya en marcha y, como he dicho al principio de este comentario, posiblemente, en unos treinta años, sería una realidad que nos dará nuevas perspectivas para continuar el imparable avance en el que estamos inmersos. La energía, a lo largo de la historia, ha permitido elevar el nivel de vida del ser humano. La energía es la base de todo sistema económico, de ella depende el coste de todos los productos, desde un chicle a una limusina: a más escasez de energía, más cuesta ganarse la vida. El carbón, en primer lugar, posibilitó la extinción de la servidumbre; el petróleo, mientras fue abudante, logró que la economía mundial viviese su época dorada durante 1950-1973; la energía de fisión actual se presenta, a veces, como única alternativa. Sin embargo, todas estas energías tienen un vicio común: o son escasas o contaminan.

 central nuclear 1 Fotos de centrales nucleares

Tenemos que huir de esto, la Fisión nuclear no es la solución Pero no me gustaría cerrar este comentario sobre la fusión sin contestar a una importante pregunta… ¿por qué la fusión?

 

Porque tiene una serie de ventajas muy significativas en seguridad, funcionamiento, medio ambiente, facilidad en conseguir su materia prima, ausencia de residuos peligrosos, posibilidad de reciclar los escasos residuos que genere, etc. Los recursos combustibles básicos (deuterio y Litio) para la fusión son abundantes y fáciles de obtener.

  • Los residuos son de helio, no radiactivos.
  • El combustible intermedio, Tritio, se produce del Litio.
  • Las centrales eléctricas de fusión no estarán expuestas a peligrosos accidentes como las centrales nucleares de fisión.
  • Con una elección adecuada de los materiales para el propio dispositivo de fusión, sus residuos no serán ninguna carga para las generaciones futuras.
  • La fuente de energía de fusión es sostenible, inagotable e independiente de las condiciones climáticas.

Para producir la energía de fusión solo tenemos que imitar lo que hace el Sol. Tenemos que hacer chocar átomos ligeros de Hidrógeno para que se fusionen entre sí a una temperatura de 15 millones de grados Celsius, lo que, en condiciones de altas presiones (como ocurre en el núcleo del Sol) produce enormes energías según la formula E=mc2 que nos legó Einstein demostrando la igualdad de la masa y la energía.

Claro que, el problema que surge en la fusión es que para que este tipo de reacciones se produzca se necesita un enorme aporte energético que logre que los nucleos venzxan la fuerza de repulsión que existe entre ellos (ambos cargados positivamente), y puedan universe. Este aporte energético se logra mediante el calor, aplicando temperaturas de millones de grados.

El problema comentado anteriormente proviene de la dificultad de conseguir un reactor nuclear que pueda aguantar esas temperaturas sin destruirse. El estado de la materia a fusionar a esta temperatura se denomina plasma, y su estructura atómica es un completo desorden en este punto. Sí, es verdad que estamos jugando con fuerzas muy poderosas, ¡querer imitar lo que hacen las estrellas!

iter-tokamak

             Fotogtafía: El Reactor Tokamak del Proyecto Iter

La fusión nuclear es el proceso mediante el cual dos núcleos atómicos se unen formar uno de mayor masa atómica. Este núcleo tiene una masa inferior a la suma de las masas de los dos que se han fusionado para formarlo y esta diferencia de masa es liberada en forma de energía. Actualmente se está investigando en este tipo de reactores en un consorcio denominado ITER. Las dos formas que se están experimentando para poder confinar la materia a fusionar son el confinamiento magnético y confinamiento inercial.

  • Confinamiento magnético: Se logra crear y mantener la reacción de fusión gracias a grandes cargas magnéticas.
  • Confinamiento inercial: El calentamiento se obtiene mediante láseres y el confinamiento del plasma con la inercia de la materia que se encuentra en el interior.

Todas las respuestas a nuestras necesidades están en la Naturaleza. Sin embargo, debemos ir con exquisito cuidado, tantear suavemente los resortes que nos puedan llevar a conseguir las respuestas deseadas, ya que, no podemos jugar a ser dioses sólo somos humanos, y, existen fuerzas que ni podemos imaginar. Tratar de buscar soluciones…Sí, hacerlo de cualquier manera…No.

 Archivo:Fusión solar.png

                     En el proceso de la fusión Solar está la respuesta

¿Te imaginas una fuente de energía limpia, barata y casi inagotable? ¿Que utilizara agua como combustible y no produjera ningún de residuo? Son estos sueños los que alimentan la esperanza de la fusión nuclear. Pero, ¿es factible? Pues parece ser que todavía no pero, estamos en el camino.

 

El ojo humano, por muy bello que pueda ser,  tiene sus limitaciones para ver. Sin embargo, la Mente no tienes límites para  imaginar y, a lo largo de la historia de la Humanidad se han dado pruebas de lo lejos que pueden llegar nuestros pensamientos. Hasta no hace mucho se creía imposible que se pudieran lograr muchos de los avances que , nos parecen cosas cotidianas, y, en el futuro no muy lejano, es posible que podamos gozar de esa energía limpia y de contaminación ausente que nos pueda abrir el camino hacia una nueva era. Nuestra “Casita Azul” necesita que la cuidemos y, un paso muy importante para ello sería…La Fusión Nuclear que, al menos le evitaria algunas incomodidades que, por otra parte, redunda en nosotros mismos.

 

Nuclear Power Image Gallery Proposed construction site of ITER fusion reactor plant at Cadarache, France. See more nuclear power pictures. courtesy ITER. Los esfuerzos e inversiones por lograr la energía de fusión son considerables y, si en los próximos cuarenta años se ha conseguido… Deberíamos estar muy satisfechos, dado que, la empresa, no será fácil.

De todas las maneras y a pesar de lo mucho que nuestras mentes pueden imaginar, no será fácil lograr,  aquí en la Tierra el mismo proceso que se produce en nuestro Sol, y, tantas dificultades se presentan ello que, por eso, muchos hablan de la fusión fría.

 

La fusión fría es el genérico dado a cualquier reacción nuclear de fusión producida a temperaturas y presiones cercanas al ambiente, muy inferiores a las necesarias normalmente la producción de reacciones termonucleares (millones de grados Celsius), utilizando equipamiento de relativamente bajo costo y un reducido consumo eléctrico para generarla.

 

¿Podeis imaginar que pudiéramos producir en la Tierra 15 millones de grados de temperatura? ¿Qué máquinas podrían soportarlo? y, luego, aislar esas instalaciones del exterior para que el calor no saliera y se produjera una debacle de proporciones inmensas…no parece nada fácil tampoco. Habrá que esperar y seguir trabajando sin desmayo, nuestro futuro lo necesita.

En relación a nuevas fuentes de energías, nuestro contertulio Rafael Flores, me ha envíado un avance de su propia teoría conseguir energía y, sólo me ha dado tiempo de echar una rápìda mirada para ver, si mis limitados conocimientos pueden aportar alguna cosa a sus ideas. Él comienza su envío con el envío anónimo de éstas frases:

“La ciencia y la tecnología no avanzan la comodidad de lo ya inventado, el poder creativo aplicado a las áreas potenciales de innovación es un atajo a la solución de los problemas”.

Lo cierto es que siempre fue así, y, el amigo Rafael siendo consciente de ello, tiene sus propias ideas al respecto que, esperémos den su fruto lo antes posible. Lo leído tiene buena pinta y, en cuanto pueda, le daré mi parecer.

emilio silvera

¡La Energía! Un problema a resolver

 

Fusión de Deuterio con Tritio produciendo helio-4 liberando un neutrón, y generando 17,59 MeV de energía, cantidad de masa apropiada convertida de la energía cinética de los productos, de acuerdo con E = Δm c2. En física nuclear , la fusión nuclear es el proceso por el cual varios núcleos atómicos de carga similar se unen formar un núcleo más pesado. Se acompaña de la liberación o absorción de una cantidad enorme de energía, que permite a la materia entrar en un estado plasmático.

 

El futuro que nos espera será muy distinto al presente que ahora podemos vivir, y, la vida cotidiana en las Sociedades venidaderas, serán también distintas debidos a los cambios que se avecinan en campos de la Ciencia como la Física y la Tecnología, Computación, Materiales y, sobre todo, nuevas que todo lo cambiaran.

Iter, el reactor de la fusión nuclear

Por primera vez se aspira a que un reactor de fusión produzca energía.

Este proceso puede liberar enormes cantidades de energía. Sin embargo el proceso no es tan simple, requiere de una enorme energía de activación a una temperatura del orden de los millones de grados. De haber esta energía, surge otra dificultad: la estructura material de un reactor puede fundirse a tan elevada temperatura.

Dentro de unos treinta años estaremos en el camino correcto, la energía de fusión sería una realidad que estará en plena expansión de un comenzar floreciente. Sin residuos nocivos peligrosos como las radiaciones de la fisión nuclear, la fusión, nos dará energía limpia y barata en base a una materia prima muy abundante en el planeta Tierra.

 

No todas las estrellas fusionan el hidrógeno en helio en la misma medida, las estrellas más pequeñas conocidas como enanas rojas son las más abundates en el Universo y, al fusionar muy lentamente sus vidas son muchos más extensas que las de otras estrellas con más masas, pueden durar más de veinte mil millones de años, más que la edad que actualmente tiene el Universo. Nuestro Solo, en la medida que consume el combustible nuclear de fusión, tiene una vida que se estima en diez mil millones de años. Una estrella gigante fusiona el material que la conforma de manera desmesurada y voraz y su vida es mucho más corta que la de nuestro Sol.

Nuestro Sol fusiona Hidrogeno en Helio a razón de 4.654.000 toneladas por segundo. De esta enorme cantidad de Hidrógeno, 4.650.000 toneladas se convierten en Helio. Las 4.000 toneladas restantes, son lanzadas al espacio en forma de luz y calor, energía termonuclear de la que, una parte, llega al planeta Tierra y hace posible la vida.

Resulta pues que, el combustible nuclear de las estrellas es el Hidrógeno que mediante su fusión hace posible que genere tal enormidad de energía. Así lleva el Sol unos 4.500 millones de años, y se espera que, al menos durante un período similar, nos esté regalando su luz y su calor.

No debemos confundir la Fisión con la Fusión, la primera es la que se emplea en las Centrales nucleares para producir energía y, ya sabemos todo lo peligrosa que resulta (Japón, en sus propias carnes ha sufrido y sufre sus consecuencias), las radiaciones del Uranio y del Plutonio son fatales para la vida. Por el contrario, la fusión es limpia pero…de momento, inalcanzable.

Pero ¿tenemos Hidrógeno en el planeta Tierra para tal empresa? La verdad es que sí. La fuente de suministro de Hidrógeno con la que podemos contar, es prácticamente inagotable… ¡El agua de los mares y de los Océanos!

En el interior de las estrellas se forman los elementos que conocemos de la Tabla Periódica

Todos sabemos que el hidrógeno es el elemento más ligero y abundante del Universo. Está presente en el agua y en todos los compuestos orgánicos. Químicamente, el hidrógeno reacciona con la mayoría de los elementos. Fue descubierto por Henry Cavendisch en 1.776. El hidrógeno se utiliza en muchos procesos industriales, como la reducción de óxidos minerales el refinado del petróleo, la producción, de hidrocarburos a partir de carbón y la hidrogenación de los aceites vegetales y, actualmente, es un candidato muy firme para su uso potencial en la economía de los combustibles de hidrógeno en la que se usan fuentes primarias distintas a las energías derivadas de combustibles fósiles (por ejemplo, energía nuclear, solar o geotérmica) para producir electricidad, que se emplea en la electrolisis del agua. El hidrógeno formado se almacena como hidrógeno líquido o como hidruros de metal.

Bueno tanta palabrería y explicaciones solo tiene por objeto notar la enorme importancia del Hidrógeno. Es la materia prima del Universo, sin él no habría estrellas, no existiría el agua y, lógicamente, tampoco nosotros podríamos estar aquí sin hidrógeno.

 

Si finalmente somos capaces de conseguir energía a través de la fusión nuclear, la Humanidad habrá dado un paso gigante su futuro. Pero sigamos con las explicaciones. Cuándo dos moléculas de Hidrógeno se junta con una de Oxígeno (H2O), tenemos el preciado líquido que llamamos agua y sin el cual la vida no sería posible.

Así las cosas, parece lógico pensar que, conforme a todo lo antes dicho, los seres humanos, deberán fijarse en los procesos naturales (en este caso el Sol y su producción de energía), y, teniendo como tiene a su disposición la materia prima (el Hidrógeno de los océanos), procurar investigar y construir las máquinas que sean necesarias conseguir la fusión, la energía del Sol.

Esa empresa está ya en marcha y, como he dicho al principio de comentario, posiblemente, en unos treinta años, sería una realidad que nos dará nuevas perspectivas para el imparable avance en el que estamos inmersos. La energía, a lo largo de la historia, ha permitido elevar el nivel de vida del ser humano. La energía es la base de todo sistema económico, de ella depende el coste de todos los productos, desde un chicle a una limusina: a más escasez de energía, más cuesta ganarse la vida. El carbón, en primer lugar, posibilitó la extinción de la servidumbre; el petróleo, mientras fue abudante, logró que la economía mundial viviese su época dorada durante 1950-1973; la energía de fisión actual se presenta, a veces, como única alternativa. Sin embargo, todas estas energías tienen un vicio común: o son escasas o contaminan.

 central nuclear 1 Fotos de centrales nucleares

Tenemos que huir de esto, la Fisión nuclear no es la solución Pero no me gustaría cerrar este comentario sobre la fusión sin contestar a una importante pregunta… ¿por qué la fusión?

 

Porque tiene una serie de ventajas muy significativas en seguridad, funcionamiento, , facilidad en conseguir su materia prima, ausencia de residuos peligrosos, posibilidad de reciclar los escasos residuos que genere, etc. Los recursos combustibles básicos (deuterio y Litio) para la fusión son abundantes y fáciles de obtener.

  • Los residuos son de helio, no radiactivos.
  • El combustible intermedio, Tritio, se produce del Litio.
  • Las centrales eléctricas de fusión no estarán expuestas a peligrosos accidentes como las centrales nucleares de fisión.
  • Con una elección adecuada de los materiales para el propio dispositivo de fusión, sus residuos no serán ninguna carga para las generaciones futuras.
  • La fuente de energía de fusión es sostenible, inagotable e independiente de las climáticas.

Para producir la energía de fusión solo tenemos que imitar lo que hace el Sol. Tenemos que hacer chocar átomos ligeros de Hidrógeno para que se fusionen entre sí a una temperatura de 15 millones de grados Celsius, lo que, en de altas presiones (como ocurre en el núcleo del Sol) produce enormes energías según la formula E=mc2 que nos legó Einstein demostrando la igualdad de la masa y la energía.

Claro que, el problema que surge en la fusión es que para que este tipo de reacciones se produzca se necesita un enorme aporte energético que logre que los nucleos venzxan la fuerza de repulsión que existe entre ellos (ambos cargados positivamente), y puedan universe. Este aporte energético se logra mediante el calor, aplicando temperaturas de millones de grados.

El problema comentado anteriormente proviene de la dificultad de conseguir un reactor nuclear que pueda aguantar esas temperaturas sin destruirse. El estado de la materia a fusionar a esta temperatura se denomina plasma, y su estructura atómica es un completo desorden en este punto. Sí, es verdad que estamos jugando con fuerzas muy poderosas, ¡querer imitar lo que hacen las estrellas!

iter-tokamak

             Fotogtafía: El Reactor Tokamak del Proyecto Iter

La fusión nuclear es el proceso mediante el cual dos núcleos atómicos se unen formar uno de mayor masa atómica. Este núcleo tiene una masa inferior a la suma de las masas de los dos que se han fusionado para formarlo y esta diferencia de masa es liberada en forma de energía. Actualmente se está investigando en este tipo de reactores en un consorcio denominado ITER. Las dos formas que se están experimentando para poder confinar la materia a fusionar son el confinamiento magnético y confinamiento inercial.

  • Confinamiento magnético: Se logra crear y mantener la reacción de fusión gracias a grandes cargas magnéticas.
  • Confinamiento inercial: El calentamiento se obtiene mediante láseres y el confinamiento del plasma con la inercia de la materia que se encuentra en el interior.

Todas las respuestas a nuestras necesidades están en la Naturaleza. Sin embargo, debemos ir con exquisito cuidado, tantear suavemente los resortes que nos puedan llevar a conseguir las respuestas deseadas, ya que, no podemos jugar a ser dioses sólo somos humanos, y, existen fuerzas que ni podemos imaginar. Tratar de buscar soluciones…Sí, hacerlo de cualquier manera…No.

 Archivo:Fusión solar.png

                     En el proceso de la fusión Solar está la respuesta

¿Te imaginas una fuente de energía limpia, barata y casi inagotable? ¿Que utilizara agua como combustible y no produjera ningún de residuo? Son estos sueños los que alimentan la esperanza de la fusión nuclear. Pero, ¿es factible? Pues parece ser que todavía no pero, estamos en el camino.

 

El ojo humano, por muy bello que pueda ser,  tiene sus limitaciones para ver. Sin embargo, la Mente no tienes límites para  imaginar y, a lo largo de la historia de la Humanidad se han dado pruebas de lo lejos que pueden llegar nuestros pensamientos. Hasta no hace mucho se creía imposible que se pudieran lograr muchos de los avances que ahora, nos parecen cosas cotidianas, y, en el futuro no muy lejano, es posible que podamos gozar de esa energía limpia y de contaminación ausente que nos pueda abrir el camino hacia una nueva era. Nuestra “Casita Azul” necesita que la cuidemos y, un paso muy importante para ello sería…La Fusión Nuclear que, al menos le evitaria algunas incomodidades que, por otra parte, redunda en nosotros mismos.

 

Nuclear Power Image Gallery Proposed construction site of ITER fusion reactor plant at Cadarache, France. See more nuclear power pictures. Photo courtesy ITER. Los esfuerzos e inversiones por lograr la energía de fusión son considerables y, si en los próximos cuarenta años se ha conseguido… Deberíamos estar muy satisfechos, dado que, la empresa, no será fácil.

De todas las maneras y a pesar de lo mucho que nuestras mentes pueden imaginar, no será fácil lograr,  aquí en la Tierra el mismo proceso que se produce en nuestro Sol, y, tantas dificultades se presentan ello que, por eso, muchos hablan de la fusión fría.

 

La fusión fría es el genérico dado a cualquier reacción nuclear de fusión producida a temperaturas y presiones cercanas al ambiente, muy inferiores a las necesarias normalmente la producción de reacciones termonucleares (millones de grados Celsius), utilizando equipamiento de relativamente bajo costo y un reducido consumo eléctrico para generarla.

 

                        Filamentos de plasma en el Sol

¿Podeis imaginar que pudiéramos producir en la Tierra 15 millones de grados de temperatura? ¿Qué máquinas podrían soportarlo? y, luego, aislar esas instalaciones del exterior para que el calor no saliera y se produjera una debacle de proporciones inmensas…no parece nada fácil tampoco. Habrá que esperar y seguir trabajando sin desmayo, nuestro futuro lo necesita.

En relación a nuevas fuentes de energías, nuestro contertulio Rafael Flores, me ha envíado un avance de su propia teoría conseguir energía y, sólo me ha dado tiempo de echar una rápìda mirada para ver, si mis limitados conocimientos pueden aportar alguna cosa a sus ideas. Él comienza su envío con el envío anónimo de éstas frases:

“La ciencia y la tecnología no avanzan la comodidad de lo ya inventado, el poder creativo aplicado a las áreas potenciales de innovación es un atajo a la solución de los problemas”.

Lo cierto es que siempre fue así, y, el amigo Rafael siendo consciente de ello, tiene sus propias ideas al respecto que, esperémos den su fruto lo antes posible. Lo leído tiene buena pinta y, en cuanto pueda, le daré mi parecer.

emilio silvera

La Fusión Nuclear ¿Será la energía futura?

Fusión de deuterio con tritio, por la cual se producen helio 4, se liberan un neutron  y se generan 17,59 MeV de energía, como cantidad de masa apropiada convertida de la energía cinética de los productos, según la fórmula E = Δm c2. En realidad, lo que estamos intentando hacer, es copiar lo que hace el Sol y todas las estrellas del Universo.

El mundo, como el Universo mismo, funciona porque la energía está presente y hace posible los cambios y transiciones de fase que se producen en las cosas, en los planetas y en las estrellas que, con el paso del tiempo van cambiando al mismo tiempo que consumen energía. Así las cosas, tenemos que convenir que la energía, es muy necesaria para todo y también, para el progreso y continuidad de nuestras modernas sociedades.

Una de las posibles energías que se investigan y se está tratando de dominar es la llamada energía de fusión que consiste, en hacer lo mismo que hacen las estrellas del cielo “fusionar materiales ligeros en otros más pesados produciendo, en el proceso, mucha energía”.

El sueño de los científicos está centrado en conseguir esa clase de energía -que tiene muchos inconvenientes a la hora de plasmarla en realidad-, de una manera que posibilite ser generada en condiciones ambientales normales consiguiendo la reacción precisa pero, las estrellas necesitan hacerlo con plasma a más de quince millones de grados.

Claro que calentar en la Tierra combustible a tan altísimas temperaturas, del orden de 160 millones de grados (equivalente a una energía por partícula de 15 keV) en el caso de la reacción más accesible, que es la que se realiza con Deuterio y Tritio para dar lugar a un Neutrón más un núcleo de Helio o partícula Alfa:

D + T → He (3,5 MeV) + n (14,1 Mev)

Una central eléctrica de fusion utilizaría como materias primas deuterio, un isótopo que supone el 0,03% del hidrógeno terrestre, y tritio, otro isótopo del hidrógeno que no existe en la Naturaleza pero que se puede obtener de otro elemento muy abundante y distribuido por todo el planeta, el litio, siguiendo la reacción:

N + Li → T + He

En la que se utilizan los propios neutrones de 14,1 MeV generados en la fusión.

Las reservas de Deuterio en el agua de la corteza terrestre y las de Litio, en minas de Sal o en las propias sales disueltas en el agua del Mar, permitirían alimentar a la Humanidad de energía de fusión durante millones de años. Por otro lado, la emisión del reactor al exterior se compone básicamente de helio, un gas que es inocuo para las personas y el medio ambiente y que ni siquiera se acumula en la atmósfera sino que se escapa al espacio gradualmente, pero además, tiene aplicaciones industriales.

Así que, como aquel que dice, de un plumazo, habríamos solucionado el problema de la contaminación y, los residuos, no sólo no serían nocivos como ocurre con los que producen las Centrales Nucleares, sino que, por el contrario, se podrían aprovechar.

Claro que las cosas nunca han resultado fáciles, y, todos los logros der la Humanidad han sido largos y a veces hasta penosos. Para conseguir la fusión de núcleos de Deuterio y Tritio de forma energéticamente rentable sería necesario, calentar el combustible a temperaturas de centenares de millones de grados. A estas temperaturas el combustible se encuentra en estado de Plasma, es decir, un gas de iones y electrones libres con carga eléctrica neta cero y con un comportamiento colectivo. La física de este plasma y la manera de confinarlo sin barreras materiales, inviables a tales temperaturas, es el objetivo principal de la investigación en el campo de la fusión.

¿Cómo se está procediendo para conseguir tal maravilla?

El esfuerzo está encaminado, en su mayor parte, en la búsqueda de un Campo magnético capaz de mantener confinado el Plasma. Las partículas cargadas en el seno de un campo magnético describen trayectorias helicoidales cuyos ejes son aproximadamente las líneas de campo. A las temperaturas y campos magnéticos típicos, de decenas de keV y varios Tesla,el radio de giro de la hélice, denominado radio Larmor, es del orden de una décima de milímetro para los electrones y varios milímetros para los iones de deuterio y tritio. De esta forma iones y electrones quedan virtualmente atrapados, pudiendo desplazarse sólo a lo largo de las líneas del campo. Si cerramos las líneas del campo sobre sí mismas utilizando una geometría toroidal, podemos mantener confinado el plasma.

Al día de hoy existen dos grandes familias de dispositivos de confinamiento magnético con geometría toroidal, conocidos como Tokamak y Stellarator. Los dos conceptos son dos formas diferentes de resolver un problema intrínseco de la configuración magnética toroidal: la generación del campo magnético confinante, lo cual, no resulta nada fácil.

No vamos explicar aquí y ahora los resultados de estos dos sistemas y los beneficios alcanzados por los mismos, sería muy técnico y largo de explicar.

El tiempo ha ido pasando y, desde aquellos primeros momentos y pruebas, se ha ido aprendiendo y mejorando las técnicas hasta llegar al Proyecto ITER que ha mejorado todo lo anterior en prácticamente cinco órdenes de magnitud. Se ha mejorado el confinamiento mediante la construcción de experimentos de mayor tamaño y eficiencia, se han desarrollado métodos para calentar el Plasma hasta las temperaturas de decenas de keV, se han desarrollado sofisticados sistemas para el control de la corriente del Plasma e incluso se han realizado los primeros experimentos de generación de neutrones y partículas Alfa que tuvieron lugar por primera en 1991 en el JET, el mayor tokamak del mundo con 100 m³ de Plasma.

En 1994 el Tokamak TFTR de Princeton (EE UU) alcanzó potencias de fusión de 11 MW, y JET de nuevo en 1997, alcanzó los 16 MW pero todavía lejos de obtener una ganancia energética neta, ya que para poder hacerlo hicieron falta 24 MW, más de lo que se logró generar.

El objetivo está centrado en obtener en el ITER diez veces más de energía que la necesaria para mantener el Plasma, o en otros términos mantener un factor de amplificación de Q = 10. ITER será todavía un experimento y no será un Generador de electricidad hasta que no consiga este objetivo propuesto.

Aquí, en todo este “mundillo” de la fusión nuclear, el campo tecnológico implicado es alucinante y obliga, para conseguir los objetivos, a unos avances en el campo de fuerza magnética que, a muchos, está dejando con la boca abierta por el asombro. Sin embargo, falta mucho para conseguir lo propuesto.

Aquí, el problema fundamental que se presenta es el de los materiales que son necesarios para el Reactor, no sirven los materiales que tenemos y, sin más remedio, habrá que investigar para conseguir materiales más eficientes y que puedan, soportar, lo que en ese trabajo se les requiere.

Los dos desafíos fundamentales son:

a)   El problema de la interacción Plasma-pared. Aunque el campo magnético confina el campo de alta temperatura, inevitablemente la difusión hace que las partículas acaben alcanzando la pared, dando lugar a cargas térmicas que pueden alcanzar los 10 MW/m² y causando una importante erosión a los materiales de la misma. Para paliar este problema, se está trabajando en dos frentes que, posiblemente, puedan solucionarlo.

b)   Materiales resistentes a neutrones. Las reacciones de fusión nuclear generan neutrones de 14 MeV de energía que producen daños en el material estructural del Reactor, así como burbujas de Hidrógeno y Helio que empeoran las propiedades del mismo. Y, otra reacción que producen esos neutrones es que, materiales estables se convierten en radiactivos, dando lugar a residuos indeseables aunque de media y baja actividad y no tan malos como los del Uranio, sí deben ser custodiados adecuadamente.

El ITER estará equipado con unos pequeños módulos de prueba para la regeneración de tritio a partir de compuestos de litio, pero no contará con un sistema completo capaz de producir todo el tritio que consuma. Estos sistemas son absolutamente necesarios en un Reactor Productor de electricidad y suponen un formidable desafío tecnológico ya que han de cumplir con la triple función de regenerar el tritio, extraer las energías que transportan los neutrones y servir de blindaje para que no lleguen neutrones a las bobinas superconductoras y otros componentes sensibles.

Al día de hoy son varios los programas en desarrollo que andan a la búsqueda de la Fusión Nuclear, unos están financiado por varios países, otros por países individuales y, alguno, son de iniciativa particular de Empresas.

Seguramente, dentro de 40 años, cuando miremos hacia el pasado de la Fusión Nuclear, nos parecerán rudimentarios estos proyectos que hoy, son de la más alta tecnología que tenemos pero, en la ciencia, siempre será así.

Publica: emilio silvera

Fuente: Revista de Física Volumen 27, número 2 de 2.013

Autores: F. Castejón, C. Hidalgo y J. Sánchez

¿Convertir energía en materia?

Sí, sería posible convertir energía en materia, pero hacerlo en grandes cantidades resulta poco práctico. Veamos por qué. Según la teoría de Einstein, tenemos que E = mc2, donde E representa la energía, medida en ergios, m representa la masa, medida en gramos, y c es la velocidad de la luz en centímetros por segundo. La luz se propaga en el vacío a una velocidad aproximada a los 30.000 millones (3×1010) de centímetros por segundo. La cantidad c2 representa el producto c×c, es decir: 3×1010 × 3×1010, ó 9×1020. Por tanto, c2 es igual a 900.000.000.000.000.000.000. Así pues, una masa de un gramo puede convertirse, en teoría, en 9×1020 ergios de energía.


Convertir la energía en materia requiere el poceso contrario al de converti la masa en energía, y, desde luego, se necesitaría una inmensa cantidad de energía para conseguir algo de masa. Fijémonos en que un fotón gamma, por ejemplo, aún siendo muy energético, sólo daría lugar a un electrón y un positrón (siendo la masa de ambos ridícula).

El ergio es una unida muy pequeña de energía que equivale a: “Unidad de trabajo o energía utilizado en el sistema c.g.s y actúa definida como trabajo realizado por una fuerza de 1 dina cuando actúa a lo largo de una distancia de 1 cm: 1 ergio = 10-7 julios”. La kilocaloría, de nombre quizá mucho más conocido, es igual a unos 42.000 millones de ergios. Un gramo de materia convertido en energía daría 2’2×1010 (22 millones) de kilocalorías. Una persona puede sobrevivir cómodamente con 2.500 kilocalorías al día, obtenidas de los alimentos ingeridos. Con la energía que representa un solo gramo de materia tendríamos reservas para unos 24.110 años, que no es poco para la vida de un hombre.

O digámoslo de otro modo: si fuese posible convertir en energía eléctrica la energía representada por un solo gramo de materia, bastaría para tener luciendo continuamente una bombilla de 100 vatios durante unos 28.200 años.


Claro que una cosa es convertir la masa en energía y otra muy distinta hacer lo contrario, pero ¿ sería posible convertir energía en materia? Bueno, ya antes hemos dado la respuesta: Sí, pero a costa de un gasto ingente de energía que haría el poceso demasiado costoso y poco rentable. Fijémonos en estos ejemplos:

La energía que representa un solo gramo de materia equivale a la que se obtendría de quemar unos 32 millones de litros de gasolina. Nada tiene de extraño, por tanto, que las bombas nucleares, donde se convierten en energías cantidades apreciables de materia, desaten tanta destrucción.

La conversión opera en ambos sentidos. La materia se puede convertir en energía y la energía en materia. Esto último puede hacerse en cualquier momento en el laboratorio, donde continuamente convierten partículas energéticas (como fotones de rayos gamma) en 1 electrón y 1 positrón sin ninguna dificultad. Con ello se invierte el proceso, convirtiéndose la energía en materia.


De momento, no hemos podido conseguir gran cosa para fines pacíficos en lo que a las reacciones nucleares se refiere. Si acaso la energía de fisión de las Centrales nucleares que, en realidad, no es muy aconsejable, y, por otro lado, con fines armamentísticos con las bombas atómicas y de otro tipo que utilizan la fusión.

Pero estamos hablando de una transformación de ínfimas cantidades de masa casi despreciable. ¿Pero podremos utilizar el mismo principio para conseguir cantidades mayores de materia a partir de energía?

Bueno, si un gramo de materia puede convertirse en una cantidad de energía igual a la que produce la combustión de 32 millones de litros de gasolina, entonces hará falta toda esa energía para fabricar un solo gramo de materia, lo que nos lleva al convencimiento de que no sería muy rentable invertir el proceso.

Fuente: Isaac Asimov